
Penetration Testing: A Duet

Dr. Daniel Geer and John Harthorne
@Stake

dgeer@atstake.com

Part I: Penetration Testing,
Looking East from 50,000�

1 Art v. Science

Penetration testing is the art of finding an open
door. It is not a science as science depends on falsifiable
hypotheses. The most penetration testing can hope for is
to be the science of insecurity - not the science of security
- inasmuch as penetration testing can at most prove
insecurity by falsifying the hypothesis that any system,
network, or application is secure. To be a science of
security would require falsifiable hypotheses that any
given system, network, or application was insecure,
something that could only be done if the number of
potential insecurities were known and enumerated such
that the penetration tester could thereby falsify (test) a
known-to-be-complete list of vulnerabilities claimed to
not be present. Because the list of potential insecurities is
unknowable and hence unenumerable, no penetration
tester can prove security, just as no doctor can prove that
you are without occult disease. Putting it as Picasso did,
"Art is a lie that shows the truth" and security by
penetration testing is a lie in that on a good day can show
the truth. These incompleteness and proof-by-
demonstration characteristics of penetration testing ensure
that it remains an art so long as high rates of technical
advance remains brisk and hence enumeration of
vulnerabilities an impossibility. Brisk technical advance
equals productivity growth and thereby wealth creation,
so it is forbidden to long for a day when penetration
testing could achieve the status of science.

That penetration testing is an art means that there
are artists. In deference to those artists, they range from
virtuosos to mules. At the low end, automation (tractors)
is replacing brute labor (mules). Automation is the
handmaiden of commoditization, and there is little doubt
that the penetration field is fully commoditized at the
lower levels of art. At that low level, scanning systems
steadily expand the scope and coverage of what they
automate. That those same scanning tools can be deployed
for evil purposes is irrelevant unless you are in the
newspaper business. As Sherlock Holmes said to Watson
(holding a scalpel), "Is it not surprising that the tools of
healing and the tools of crime are so indistinguishable?"

No, it is not surprising - a good tool is a policy- neutral
force multiplier and it is intent, that is to say character,
that determines the outcome of that force multiplication.
Penetration testing is therefore good or bad depending on
the intent of its practitioner and of the recipient of its
results. We confine this article to penetration testing
where the intent is good (the only kind one has to pay
for).

2 Characterization and Specialization

Successful penetrations can be characterized as the
illegitimate acquisition of legitimate authority. As such, a
successful penetration will yield the ability to command
network facilities to do other than what their owners
expected them to do, to gain the full or at least substantial
control of a host in a way normally reserved for trusted
operations staff, or to acquire the management interface of
an application or the functional equivalent thereof. In each
variation, the authority obtained is not otherwise available
to the person, place or thing which is performing the
penetration whether that penetration be a test or a live fire
attack. As the reader likely already knows, the most
successful penetrations are those which materially
decrease the labor required for a repeat visit and which
are silent (alarm-free) in the process. Penetration testers at
high levels of art will, therefore, attempt not only to gain
access but to gain repeatable access at low/no probability
of detection on those repeat visits. Though slang is never
eloquent except by inadvertence, the terminology
"owned" (Øwned) is rather apt when the penetration artist
can not only get in the first time but can also get in at will
on a repeat basis without detection.

Specialization is, for any field, a consequence of
expanding knowledge and the accumulating complexity
thereof. Where that knowledge is itself knowledge about
complexity, as it is here given the fundamental axiom that
complexity is the chief enemy of security, the growth rate
in (knowledge) complexity compounds and the rate of
needful specialization accelerates. Ergo, penetration
testing is and must be rapidly specializing and its
practitioners would be worthy of criticism were they not
specializing. Network penetrations are already a clear
speciality as can be seen in the array of low end products
that perform the commoditized bulk of a penetration

mailto:dgeer@atstake.com

testing regime at the level of repeatability and low labor
cost that are the hallmarks of a defined speciality. Some
of these are hand held and some are remote actuators.
Some make a bargain with a thorough look at the most
likely causes of successful penetrations while others
bargain that an inventory of everything worth looking into
is a better value. Some require an expert practitioner to
interpret, some condense the report to the level of the
reader's skill and competence. Some evolve more or less
continuously while others are stable. Network penetration
tests are a proxy for two kinds of risk, losses of
communications availability and losses of whatever part
of the overall operational integrity depends, implicitly or
explicitly, on effective perimeter control. If the network
penetration test is being done for some other purpose, the
results will tend to mislead.

A virtually similar situation exists with host
penetrations and tools arrayed around hosts for
penetration testing, but with the operating system rather
than the protocol now uppermost. Of course, some
operating systems are more worthy of testing than others
both based on inherent risk due to complexity and history
of risk due to inattention to security as a design
characteristic. Such distinctions are not the subject of this
essay, but they are real and likely to remain so for a very
long time inasmuch as design choices made badly are
difficult to fix when the installed base grows beyond some
threshold long since passed for every operating system in
common use. With host targeted penetrations, it is the
facilities of the host that are sought and hence it is the
power of the host that calibrates the level of effort that
should be expended in testing or which will be expended
by genuine attackers. Note that "power" here is a subtle
concept; it is not merely the horsepower of some
component but also the trust relationships that host has.
As it will always be true that for any host there must exist
some level of unchecked power such that the more serious
aspects of systems administration can be done under
diminished operability, host penetration tests are a proxy
for the estimation of cascade failure of authorization
integrity. As with network penetration testing, if the host
penetration test is being done for some other purpose, the
results will tend to mislead.

Applications are a slightly different kettle of fish as
they are inherently difficult to define when one is serious
about defining them. As applications expand by feature
accretion and by the kinds of labor- dividing, redundant
provisioning on which business continuity increasingly
depends, a sidebar increase in complexity can easily
exceed any one person's ability to understand the whole of
the "application" that is delivering the "customer
experience." While networks can be complex, the idea of
a network operations center and crisp metrics on what
constitutes effective network operation are at least well
enough advanced that residual questions about "What is

the real extent of my network?" are where the action is.
Not so with applications, particularly so as applications
are rarely built from the ground up in their entirety but
rather represent adaptive re-use of numerous (or perhaps
innumerable) libraries, caches, roles of authority, external
identity control, and so forth. As such, an application pen
test is much more akin to exploring the difference
between what is thought to be in place and what is
actually in place, viz., to run the application down paths
that were not intentional in the application's design and
implementation. An application pen test is less easy to
automate except for a few classes of classic failures, e.g.,
session replay or crash-vulnerability to hostile input.
Application penetration testing, in other words, is a young
and abstract art attracting young and abstract artists at the
moment of this essay. An application penetration test is a
proxy for the illegitimate use of legitimate authority, a
subtle but important difference with the illegitimate
acquisition of legitimate authority. Where legitimate
authority can be used for illegitimate purposes, there is no
implication that the defined functions, that is to say
product requirements, are failing. Rather the successful
application penetration tester is showing that other code
paths outside of the required code paths exist and that
these code paths are reachable by the tester. Application
penetration testing is, therefore, more like embezzlement
and less like a stickup. As with the other two species of
penetration testing, if the application penetration test is
being done for some other purpose, the results will tend to
mislead.

All three types of penetration testing have separate
reasons for their continued existence even as they evolve
differently. However it is fair to say that application
testing is today where the ferment is because of trends in
application deployment. To state the obvious, applications
are federating - they are becoming conglomerates of
pieces running in multiple locations under multiple
ownerships and liabilities. In retail commerce, to choose
an example, catalog, payment, fulfillment and customer
service are often entirely different outsourced functions,
each relying on network delivery strategies that involve
independent hosting facilities, distributed network
caching, and roll-with-the-sun handoffs of back office
functions. An application may really and truly be the
business for all intents and purposes yet the business as a
legal entity may not own, control or operate any of the
application. If for no other reason, the pressure of
applications of this composite sort on the definition of a
network perimeter is to dissolve that perimeter, a trend
that is widely underway even before the impending
tsunami of "web services" (which, with remote procedure
calls carried on HTTP will defy even stateful content
inspection as a security strategy) extinguishes the mirage
of a corporate perimeter.

3 Time Line and Drivers

The fundamental irony of penetration testing is that
the value received by the client is itself subtle but the
clients who ask for penetration testing as their primary
security activity are but rarely thinking subtly. The
penetration artist may or may not endeavor to correct this,
but so often the hope of the client is that the penetration
tester will fail to penetrate. The better the penetration
tester the less likely it is that s/he will fail to penetrate
and, so the logic goes, the better the result and the greater
value the client receives should the penetration tester fail.
At that level of understanding, the value proposition for
the client is that the penetration tester is selling their
failure. The value of that failure is greater the less often
the penetration tester fails, i.e., the less likely the
penetration tester is to fail based on skill and history the
higher value the client has obtained if and when the
penetration tester does fail.

For the tester, one cannot sustain a high price for
penetrations unless one fails rarely (proving you are good)
but at the same time the satisfaction the customer receives
from that testing is proportional to the degree the
penetration tester fails. In penetration testing, then, one
has the classic problems of selling something (failure of
the penetrator) that is valuable fundamentally in
proportion to its scarcity, hence revenue cannot be scaled
up by expanding the supply of goods for sale as that
would defeat the scarcity on which pricing is based. In
that sense the question of "How much penetration testing
is enough?" cannot be answered without first picking
either the client or the tester point of view: The client
wants enough testing for the result to be advertising-ready
but not so much testing that the tester fails to fail. By
contrast, the tester wants enough testing to fail to fail and
thereby preserve their reputation as an entity whose
failure is worth paying a premium for, but if the client is
lame not so much testing as for the effort to get boring or
failing to fail look too easy. No wonder optimization is a
remote possibility.

While there is wisdom in that ancient English
aphorism that "It is the poor carpenter what curses his
tools," in penetration testing the best carpenters make
their own tools. These tools are part labor productivity for
the penetration tester - and advancing labor productivity is
ever the core supply-side defense of profit margins - and
part complexity rigging. These bespoke tools are, if
anything, the intellectual content of the penetration testing
field and the flux of these tools into the marketplace
measures the stage of commodotized market
development. Password crackers are a fine example - who
would write one today now that first rate crackers are
available for so little money that all you are really paying
for is a user interface? Network service inventory takers
are just as fine an example - who would write one of these

when the Internet is so full of them that over 10% of total
Internet traffic is the sort of low level scans these tools are
built to do? In some sense, the point at which an artist's
intuition moves beyond mere suspicion and s/he writes
down (codes) what s/he knows in the form of a tool the
state of the art is advanced � not everywhere and at once,
but in the sense that the future is already here, just
unevenly distributed. It is the tools of the artist class that
define the state of their art, even if they will not show
them to you.

The future is simple: The target of penetrations will be
ever further inside the enterprise as the corporate
perimeter dissolves and inside versus outside has ever less
practical difference, i.e., for there to be a penetration there
has to be something to penetrate and the corporate
network perimeter is as interesting to penetrate as a
month-old whale carcass. Penetration testing in the main
will look more and more like quality assurance in that it
will look more and more like falsifying hypotheses that
such and such a flaw is present (by attempting to
demonstrate that it is present and failing to do so) and less
and less like a voyage of discovery about what hitherto
unknown flaws might be present, excepting for the top
end artists. There is always room at the top, but probably
not much place else. The artists who can reliably estimate
the level of effort to accomplish a penetration are the ones
who will add value because they can chart the steepness
of the curve of tradeoff costs as one moves ones worry
from idle sociopaths to committed opponents to as-yet-
trusted turncoats. The ones who are just taking inventory
can be replaced with a button. The ones who can quantify
in a way that makes risk management advance are the
ones who will survive.

Part II: A Portrait of the Artist as a
Penetration Tester

4 The Five W's of Application
Penetration Testing

As Application penetration testing is the least
commoditized of the major penetration test specialities, its
future is the least distributed, and a closer examination of
the current incarnation of its future is therefore warranted.
Papers extrapolating specific exploits against specific
applications abound on the web and elsewhere. There is
little wisdom to be gained by rehashing such ephemeral
morsels here. Instead, we will focus on the less immutable
aspects of application penetration testing, and will expand
on the justification for pentesting, as it is called, its
methodology, its major players, its current and future
placement in the development lifecycle and its area of
prioritization and focus. In short, we will examine the

why, what, who, when and where of application
penetration testing. Without attempting to dissect and
categorize the many species of application here, we will
focus largely on web applications, though most of the
principles discussed here apply, at least in part, to other
types of applications as well.

4.1 Why

So we stop to ask ourselves, "Why should I pay
someone to break into my own applications?" Especially
if, as described in the first part of this article, penetration
testing is at best a science of insecurity, pitting the skill
and hopes of a security professional against the skill and
hopes of the developer. Application penetration testing
continues to yield a tremendous Return On Security
Investment (ROSI) precisely because the future of
application security is still so unevenly distributed. The
focus of security consciousness has only recently shifted
to applications, owing to the assumption that applications
are the slaves of infrastructure and that it is the networks
and hosts that define the boundaries of the corporation's
digital assets. Indeed, we continue to refer to the corporate
homeland as the "corporate network", not the "corporate
application mass" (and not just because it is phonetically
more pleasant). In any case, it is the application that
reaches out across the Internet into every connected
human's living room. So while we may think of firewalls,
network ACLs and host defenses as our corporate walls
and ceilings, the applications represent our doors and
windows and are therefore becoming both the target of
attackers and the focus of security professionals.

A quick glance at the lamentably few statistics on
digital (in)security provide a sobering reminder of just
how critical it is to buckle up before putting the
corporation onto the information super highway.
According to the CSI/FBI survey on computer crime and
security (http://www.gocsi.com/press/20020407.html)
which, while not without limitations is more likely to
understate the extent of criminality than otherwise, ninety
percent of respondents (primarily large corporations and
government agencies) detected computer security
breaches within the last twelve months. Eighty percent
acknowledge financial losses due to computer breaches.
Thirty-eight percent suffered unauthorized access or
misuse on their Web sites within the last twelve months,
with twenty-one percent admitting that they really didn't
know whether there had been any unauthorized access or
misuse, because they either weren't monitoring their sites
for abuse or weren't sufficiently confident that they were
monitoring those sites successfully.

While these survey based numbers are chilling,
they are becoming mundane through repetition and are
fairly frequently shrugged off as qualitative and/or
personally irrelevant since they are based on a voluntary

survey. The more quantifiable statistics from the honeynet
project provide more prescient commentary on the world
of digital abuse. Those who are unfamiliar with the
honeynet project, should visit their site at
http://www.honeynet.org � it is as interesting as it is
enlightening. As a quick synopsis, the organizers of the
honeynet project implemented a clever scheme for
tracking and monitoring black hat activity passively. As
their site indicates, a honeynet is a network "similar to a
fishbowl, where you can see everything that happens
inside it,� a highly monitored network that is connected to
the Internet but is not advertised actively in any way; in
fact, it consists of nothing but a few IP addresses. All
activity in the network therefore represents either the
collision of curiosity and coincidence or an attempted
attack. The captured activity illustrates the tools, tactics,
and motives of the blackhat community. Some statistics
taken directly from the honeynet project's web site:

• Between April and December 2000, seven
default installations of Red Hat 6.2 servers
were attacked within three days of
connecting to the Internet. Based on this, we
estimate the life expectancy of a default
installation of Red Hat 6.2 server to be less
then 72 hours. The last time we attempted to
confirm this, the system was compromised
in less than eight hours. The fastest time
ever for a system to be compromised was
15 minutes. This means the system was
scanned, probed, and exploited within 15
minutes of connecting to the Internet.
Coincidentally, this was the first honeypot
we ever setup, in March of 1999.

• A default Windows98 desktop was installed
on October 31, 2000, with sharing enabled,
the same configuration found in many
homes and organizations. The honeypot
was compromised in less than twenty four
hours. In the following three days it was
successfully compromised another four
times. This makes a total of five successful
attacks in less than four days.

The lack of production applications in the honeynet
precludes revelations about the shift of attack activity to
the application space, but the statistics clearly underscore
the existence and tenacity of the black hat. Unrelated
empirical evidence clearly indicates a shift in attack
methodology from passively exploiting exposed network
functionality, i.e. mounting an exposed share, to actively
abusing networking applications, such as writing buffer
overflows to subvert web servers or application servers.
Also, it is important to note that the honeynet statistics
underestimate the real danger to corporate applications

http://www.gocsi.com/press/20020407.html
http://www.honeynet.org/

since they capture only opportunistic activity, not targeted
activity.

Many developers remain nonplussed by attack
statistics, arguing that their corporate development
process is highly optimized or that their applications do
not expose critical functionality or that the corporate
firewalls and Intrusion Detection System (IDS) will
protect the applications from any real danger or that the
Quality Assurance process will find any errors in
implementation. Penetration testing is the key to resolving
this debate and is critical for determining how and where
to integrate defensive tactics in application development
and deployment. First of all, while the application
development process has been highly optimized over the
last 20 years, this optimization has been largely focused
on work flow management, i.e., on enhancing the ability
of developers to collaborate effectively and efficiently on
development, and on performance enhancement and
feature expansion. The increasing pace of development
has ensured that security and other hitherto unmarketable
"features" have remained on the fringe of the development
lifecycle. Secondly, application vulnerabilities can be
leveraged to gain not only the intended authority of the
application, but also the oft overlooked "power" of its
service user. Witness the efficacy of Code Red and
NIMDA, or even the URL encoding vulnerability in IIS
4.0/5.0. In all cases, an application level vulnerability
(admittedly in an infrastructure related application) led to
compromise of the host itself, thereby providing an
avenue into the network, wreaking significant, well-
document havoc. As for firewalls, they explicitly allow
application traffic, essentially ignoring its contents or, at
best, perusing it for a few generic, well-documented
signatures. Additionally, the rapid expansion in
application traffic, demand for high availability and
increasing use of SSL all collaborate to render IDS
systems ineffective or, at best insufficient, in deterring
significant application centric attacks.

As for QA testing, it is and has always been a means of
testing for "expected" functionality. Penetration testing is
very much the opposite approach. A penetration tester is
constantly probing for unexpected functionality. The skill
sets required for each field are entirely different, and a
million years of quality QA testing, though it may
potentially highlight implementation errors with security
implications, cannot hope to replicate the security
knowledge to be derived from one week of penetration
testing. Normal usage too will not replicate the process of
an attack. Who, in the course of either QA work or normal
application usage, would ever have thought to request a
URL containing ..%255c..%255 or to submit 65,000
characters in a form field, much less an HTTP header?
Clearly, until security design is advanced and common,
penetration testing is a distinct activity legitimized by
both the prevalence of digital attacks and the lack of

adequate preventative measures elsewhere in either the
application development or deployment lifecycle.

4.2 Who

Now that we understand the need to penetration
test and that we have clarified the distinction between QA
testing and penetration testing, we have begged the
question of who should perform the testing. As stated
earlier, there are both mules and artists out there. Clearly
artists are unique, and clearly their skills are not yet
commodities and are therefore not reducible to succinct
description. Nevertheless, good penetration testers share
several qualities based on the nature of the art they
practice and we shall attempt to summarize the critical
qualities they share.

First of all, it is essential that a penetration test
professional be technically savvy. The requisite extent
and breadth of this savvy can be argued, but facility with
basic application technologies is a requirement, and
specialization beyond general expertise is a significant
advantage. Most, if not all of the application penetration
testers who consistently "fail to fail" have extensive
experience as developers, such that they anticipate design
and implementation errors and can identify application
structures based on the technologies in use and the failure
modes discerned. Many successful application testers
have at least some experience as system administrators,
such that they are adept at leveraging vulnerabilities
where applications and infrastructure intercept and such
that they are able to leverage minor errors in either area
(infrastrucure or applications) to create or enhance an
advantage in the other area. Many test professionals have
also been trained in the methodology and basic techniques
of penetration, either through a corporate training
program, government program or university program. A
number of consultants at @stake have been formally
trained by the National Security Agency (NSA), and like
the Marines who are trained in hundreds of ways to
physically kill opponents, these testers have an extensive
arsenal of exploits, tactics and strategies for attacking
both applications and the infrastructure that house them.

Still, not every tech savvy individual would make a
good penetration tester. Creativity is an absolutely vital
distinguishing characteristic. Because, as indicated earlier,
"the list of potential insecurities is unknowable and hence
unenumerable" and because penetrating defenses amounts
to the "illegitimate acquisition of legitimate authority",
penetration testing represents an art of discovering the
unknown and revealing the assumptions inherent in
someone else�s creative pursuit. In a sense, it is the art of
proving the existence of the unexpected. Also, as
illustrated in the discussion on the irony of penetration
testing, the field of qualified penetration artists narrows
rapidly as the artists ply their trade since every

vulnerability identified, classified and described expands
the lists of known insecurities and arms the developer
with another defensive tactic, or vindicates a strategic
defense, thereby increasing the creativity required for
future penetrations. Clearly it is an irony of all businesses
that their ultimate goal is to obsolete themselves before
the competition does, but it is particularly poignant in
field where professionals are tasked both with
undermining a body of knowledge and with contributing
to it at the same time. In any case, the successful tester
must be able to think in ways that others do not, since it is
his/her very task to illustrate the path that everyone else
overlooked. There is almost a child-like energy and
curiosity required to behold a hammer as a potential
shovel, or a chair as a potential table, or an authentication
routine as a route to a command prompt or a SQL
interpreter or both.

This ability to think differently and approach a
problem playfully is essential, but it must also be
tempered with a gift for discipline and organization since,
as the writer and literary critic Norman Podhoretz puts it,
"Creativity represents a miraculous coming together of
the uninhibited energy of the child with its apparent
opposite and enemy, the sense of order imposed on the
disciplined adult intelligence." As it matures, penetration
testing becomes increasingly rigorous and
methodological. The drive to penetrate increasingly
secure applications in relatively short amounts of time
enforces a systematic approach to gathering information,
verifying known vulnerabilities, hypothesizing new
vulnerabilities and prioritizing analysis. The need for
order and focus results in the creation of both tools and
methodologies for creative analysis. Tools represent the
empirical expression of technical lessons learned and, as
suggested above, the best tools are always home made.
This is especially true in the application space where the
uniqueness of attack targets almost always demand
customized tools. Application penetration testing tools
generally consist of software proxies, vulnerability
scanners, fuzzers, port scanners and sniffers, but the
penetration test professional will also learn to use non-
security specific tools, like browsers and debuggers, to
their advantage. Often simple PERL scripts prove to be a
tester's greatest asset.

Though successful penetrations can be very
exciting, the majority of the testing process consists of
failure. As Albert Einstein noted "I think and think for
months and years, ninety-nine times, the conclusion is
false. The hundredth time I am right." Indeed, if success
were guaranteed, the process wouldn't be referred to as
penetration "testing," it would just be called "penetration."
The constant hurdles and elusiveness of success mean that
test professionals must exhibit humility, determination
and patience. Despite the difficulty of finding tech savvy
and creative individuals, it is probably this requirement

that so severely limits the number of adequate penetration
test professionals in the field today. Too many testers
anticipate easy success, only to discover that success can
be difficult to achieve, especially when analyzing
applications written by experienced, security conscious
developers who have learned from previous tests and have
integrated their knowledge into the development lifecycle.
Point and click tools find only the lowest hanging fruit --
the fruit higher up the tree is much more rewarding, but it
can be difficult to reach.

In any case, we have identified a good penetration
test professional as technically savvy, creative,
disciplined, and determined. Clearly, these qualities are
difficult to come by in isolation from each other, and are
obviously all the more difficult to find in combination.
Still, they are beneficial qualities in and of themselves and
are not impossible to find within existing development
teams. Additionally, technical know-how and
organization are skills that can be learned. So, assuming
we have found several individuals who fit the proverbial
bill, we will want to examine the pros and cons of
leveraging internal capabilities versus outsourcing our
penetration testing. Clearly there are advantages and
disadvantages to each approach. For the purposes of our
discussion, we will consider "outsourcing" to mean that
the penetration test team will consist of individuals that
are unrelated to the developers, i.e., they may belong to
the same organization, but not the same development
team, or they may belong to a different company
altogether.

The critical advantages of outsourcing penetration
testing include objectivity and specialization. It is a
widely observed and understandable reality that few
companies, if any, will argue that their products are
inferior to those of their competitors. There can be
widespread agreement, however, that some products are,
in fact, clearly less desirable than others. It stands to
reason, therefore, that some people are either consciously
deceiving the public or are deceiving themselves about
the relative quality of their products. Now let's extend this
analogy for a moment to developers and their
applications. It can be easily verified that developers will
tend to defend their code in the face of criticism and that
some of this defense is unjustified given the errors found
in software today. Given the instinctual defensiveness of
the developer relative his/her code, it is largely
unreasonable to expect a developer to indicate precisely
why and where his/her code is broken or faulty. It is fairly
unreasonable to expect a developer to recognize where
his/her own expectations can be undermined, since it is
precisely those expectations that will guide his/her
examination of the code to begin with. External parties
have the distinct advantage of having less of themselves
invested in proving that the application is really rather
clever and well written after all. Additionally, using a

dedicated team of penetration testers has all the
advantages that accompany specialization. Speed, cost
and exhaustiveness are perhaps the most obvious and
desirable of these advantages. The possession of tools and
methodologies clearly facilitates a more rapid analysis,
which in turn reduces the cost of the analysis since, it can
be argued, time is money (which is more true in the world
of software development than it is in most fields). The
tools, methodology and expertise of the team additionally
ensure that analysis will be more thorough, meaning both
that more errors will be found and that confidence is more
justified where no errors are found.

That being said, there are also advantages to
having developers test their own code. Where extreme
sensitivity is an issue, for instance, it may make sense to
keep the code base exposed to as few people as possible.
The NSA is not known for outsourcing code review or
penetration testing, for example. Obviously, such work
could potentially be "outsourced" to another department
within the same organization, or precautions could be
taken to outsource such work only to trusted individuals
and to limit their likelihood of accidentally or
intentionally revealing sensitive information by enforcing
a "clean room" approach to the test procedures. Still, it is
conceivable that sensitivity might contribute to an
unwillingness to outsource. Cost may be another such
mitigating factor. While specialist will likely work faster
and therefore produce results in a more cost-effective
manner, they will also charge real dollars for their work.
Leverage of talented individuals in-house may, by
producing fewer entries on the balance sheet, represent a
preferable modus operandus. Finally, and perhaps most
importantly, using developers as a critical resource during
the penetration testing process has the distinct advantage
of introducing the home court advantage. Developers are
liable to know the weakest spots in an application's code
base and will be intuitively familiar with its design and
technology base. This type of knowledge is like gold to
attackers, be they benign or malignant. The information
gathering phase is one of the costliest and least productive
phases of the penetration testing process. Nevertheless, it
is one of the most critical phases. Leveraging insider
knowledge can mean the difference between finding zero
vulnerabilities and finding dozens. All in all, the most
effective approach, i.e. the approach most likely to find
the most vulnerabilities in the shortest amount of time,
appears to be a hybrid approach. Ideally, several
"outsourced" test professionals work in conjunction with a
technical lead from the project to identify the most likely
trouble spots and then analyze the product to determine
whether vulnerabilities exist and where.

4.3 What

Now that we are convinced of the need to penetration
test and we know whom to call, let's examine the nature
of the service to which we are committing. First of all,
there are two basic categories of penetration testing, white
box and black box. In actuality, all penetration testing is
really gray, but as the particular shade of gray is so clearly
dependent on the degree to which it approximates one end
of the spectrum, it is convenient to speak of the
spectrum's anchors as if they are absolute. In any case,
black box testing is intended to most closely replicate the
attacks of a remote, uninformed attacker. Since the
prevalent attack scenario stereotypes generally involve
remote non-employees, this is a popular approach.
Essentially, the penetration tester is only given publicly
available information about the target, perhaps only an IP
address. The advantage of this approach is that the tester
is forced to gather as much information about the target as
possible. It is common practice, for instance, to scour
message boards for "assistance needed" emails from
developers at the company in question. Developers
frequently post code snippets for problem areas, and these
snippets are sometimes very revealing, occasionally
containing passwords or other sensitive information. In
the very least, they indicate the technologies being used
by the company, which may spur further investigation by
the tester. Additionally, a company's help wanted ads
generally reveal both the technologies they are using and
the areas where they may be weak, i.e., where they need
help. Consider for a moment an ad that reads "Senior Java
developer wanted. Must be familiar with IBM's
WebSphere software platform and be experienced coding
web services that connect to Oracle databases." While this
doesn't equate to vulnerabilities, it may indicate which
bag of tricks to try first. Error messages and debugging
functionality are the other more obvious locations to look
for information leakage. Depending on the scope and
intensity of the engagement, social engineering may be
called into play as well.

White box testing differs from black box testing in that
the testers are given near total access to information about
the application they are attacking. This information
includes technology overviews, data flow diagrams, code
snippets and access to developers and business leaders.
Clearly, white box testing is more likely to reveal
vulnerabilities that might not be as obvious to the casual
onlooker. It is also likely to produce results sooner.
Additionally, a white box test will more closely mimic an
internal attack and, contrary to common perceptions, these
are the most likely. When it comes down to it, there is
clearly more bang for your buck in a white box test. That
being said, a white box tester is very unlikely to spend
hours searching the web for information leakage about
your product, if you have already given that tester all the

information there is about the application, meaning you
may not discover that your data flow diagrams have been
posted on a cracker mailing list for over a month�clearly
a piece of information you may want to know. Frequently,
clients will engage a penetration testing team to employ a
two-tiered approach, i.e., black box for one week, then
white hat for one week, or have one team doing black box
testing while another performs white box tests. The
diagram below demonstrates an overall methodologic
approach of an expert application pentester.

Regardless of what general approach is adopted, there
are three main stages to the penetration testing:

- Prepare
- Analyze
- Document and Improve

4.3.1 Prepare
The preparation step is frequently overlooked � it is

extremely important to identify the scope and extent of
the engagement. Penetration testing is by its very nature
invasive even in its most innocuous forms. Accidentally
targeting the wrong application or interface can have
severe legal ramifications. Additionally, clients generally
do not expect or want testers to bring production systems
to their knees during peak hours, so it is vital that
expectations be set about what will be attacked, when,
from where and how. Administrative tasks like

assembling a team, gathering documentation, acquiring
test accounts, reserving equipment, etc. also fall under the
preparation phase.

Information gathering also occurs at this stage.
Obviously, this step varies in length depending on the size
of the application to be tested and the "grayness" of the
tests to be performed. If data flow diagrams can be
acquired or produced faithfully based on information
gathered, formal threat modeling may take place in this
stage as well. Approaches to threat modeling vary greatly,
but they generally include an enumeration of all
application users, their access points and privilege levels,
followed by an analysis of the process and privilege
boundaries within the application itself. Analysis may
then be prioritized on those interfaces and user paths that
involve the sharpest difference in privilege levels, e.g., an
interface whereby a remote, unauthenticated user
influences a process that is running as the system user is
probably of more immediate concern than an interface
that allows an already authenticated administrator to
influence a process running as system. However the
prioritization and delegation of analysis occurs, it will
greatly influence the later stages of the test process.

4.3.2 Analyze
The analysis stage is what most people envision when

they think of penetration testing. It is here that testers

 Application Penetration
Testing Approach

Understand
Architecture

Analyze
Component

Develop
Action Plan for
Improvement

Develop
Analysis

Approach

Define Target
Application(s)

Document
Findings

Understand
Technical and

Business
Context

Discuss
Vulnerability

Risk

Build Test
Environment

(as req.)

Hypothesize
Threats

Conduct Proof
of Concept

(as req.)

Identify Risks

Analyze
Risks

Generate
Findings

Implement
Plan

Iterate
Up-to-date

Vulnerability/
Threat

Knowledge

attempt to acquire and control legitimate authority
illegitimately, i.e., this is where "hackers" attempt to Øwn
the application and its host. Errors are generated where
possible, unexpected input is supplied, interfaces are
assaulted, protocols are examined and altered, cookie
contents are abused, tools are employed and hopefully, for
the tester at least, the application falters or stutters or falls
and, hopefully, when it does, it sacrifices control to the
tester. There is no need to further elaborate on the specific
tactics used for analysis since that discussion is already
widespread and exceeds the scope of this article. It is
important to note here only that there is significantly more
documentation during the analysis phase than most people
would expect and that the analysis stage represents less of
the total process than most people would imagine. Again,
this is true by design and underscores the need for
disciplined test professionals who are not solely and
entirely motivated by a thirst to Øwn Øwn Øwn.

4.3.3 Document and Improve
Procedurally unglamorous, but nonetheless vital, the

documentation of vulnerabilities and the identification of
both strategic and tactical defenses requires both business
and technical acumen. At first glance, the process appears
rote and fairly unintelligent. Notes are gathered from all
of the testers and formalized into a standard table.
Templates are completed so that empirical evidence is
presented intelligibly, indicating both the effects of
vulnerabilities and their likely causes. Vulnerabilities may
be classified into categories, charts may be produced for
easy digestion, exact timelines of penetration test
activities are likely to be built for comparison with log
files, etc.

As unglamorous and routine as it may seem, however,
this stage is vital to a successful engagement and is where
excellent penetration testers distinguish themselves from
very good ones. True professionals provide technically
impressive findings and make recommendations that are
closely aligned with business goals. Businesses make
money by consuming risk wisely and it is irresponsible
for a test professional to suggest that a business eliminate
all risk regardless of the cost. As trite as it sounds, there is
no such thing as 100% security, and not everything is
worth protecting. Clients greatly appreciate technical
analyses that are presented in relevant context and merged
with management consulting wisdom. Excellent
penetration testers will prioritize the discovered
vulnerabilities based on the ease/likelihood of exploit,
difficulty/cost to mitigate and impact to the business if
exploited. Very good testers will only prioritize based on
the former two factors, mediocre testers will focus solely
on the first factor and beginner testers will provide no
analysis at all, just a laundry list of vulnerabilities.

4.4 Where

The "where" of penetration testing, for our purposes,
does not refer to an inconspicuous room with the shades
drawn, lit only by the faint glow of the LCD screen. No,
by where we mean of course where in the application
should the penetration tests focus. As more common
burglars might attempt a break-in at any of the various
doors and windows on a house, digital attacks will focus
on any and all interfaces provided by an application. This
may include the front door, or user interface, and it may
include the back door, which may only be intended for
use by administrators or customer service personnel or
developers. Rather than jimmying doors with crowbars, or
picking locks in a literal sense, it is via input manipulation
that the digital attacker plies his/her trade, and it is on
input that testers will focus the majority of their time as
well. That is to say, that forms will clearly be a focus, as
will HTTP headers, cookies and any other input fields
accepted, either explicitly or implicitly, by the
application.

Without a valid account of some kind, the tester is
confined to attacking the external doors and windows.
Generally, this includes static pages, which are of no
inherent value unless the web server itself can be
attacked; generic functionality including help pages and
sign-up forms, which have been known to yield under
pressure; and the authentication functionality, which will
likely bear the brunt of the tester's focus owing to its
supreme security responsibilities.

All of the seven elements of security, i.e.,
authentication, authorization, confidentiality, integrity,
non-repudiation, logging, and information disclosure are
inter-related. Clearly, violating the integrity of data on a
web server, e.g., by deleting or altering a configuration
file, may affect its ability to properly manage
authentication or authorization. Likewise, failures in an
authorization scheme certainly jeopardize the goals of
confidentiality, integrity, information disclosure and
possibly logging and non-repudiation. But of all the seven
elements, authentication is clearly the foundation.
Without properly identifying the user, there can be no
legitimate authorization scheme, there can be no
confidentiality, integrity, logging, etc. In addition to
controlling the most critical security-related functionality
of an application, the authentication interface is, by its
very nature, the most exposed interface of all since it is
the interface by which illegitimate users are identified and
rejected. Clearly authentication is a worthy target for
attackers and it is where businesses ought to spend a
significant amount of time testing their design and
implementation.

As HTTP is stateless, web applications are constantly
suffering from rather severe short-term memory loss,
much like the main character in the movie Memento. This

fact of life enforces significant complexity on the
application and complexity is the fundamental enemy of
security. As each and every request to the web server
arrives void of any and all inherent connection to previous
requests, the web server and/or application are forced to
devise an artificial scheme for remember who is who and
where they have been. This essentially amounts to
constantly authenticating the user which is, of course,
precisely what basic and digest authentication represent.
As authentication is the foundation of all other security
measures, the penetration tester has ample opportunity to
"break" security due to this structural requirement for
incessant session management. Guessing or acquiring by
other means the unique identifiers of another user
amounts to becoming that user in the eyes of the
application, and so session management attacks and
session theft will represent a significant focus of the
penetration process.

The third and final area of automatic focus for the
penetration tester is the management interface or the
administrative account. Since the management interface,
or "admin" account, explicitly provides heightened
privileges relative to the other interfaces and accounts, its
conquest reaps greater pay-offs for the attacker and
warrants particular attention for the test professional.
Additionally, while the application developers may wish
to incorporate account lock-out policies into their general
authentication scheme, it is difficult to justify locking out
the administrator if, to wit, that administrator primarily
plies his/her trade remotely, as is implied by the existence
of a separate interface or remotely accessible
administrative account. Therefore, it is frequently the case
that the administrative account can be brute forced. Where
there is lock-out functionality on the administrative
account, it can easily be locked out, which amounts to a
Denial of Service (DoS) attack that may gain the
penetration tester or attacker some time to pry open
another door somewhere else in the application.

4.5 When

The question of when to penetration test applications
seems to be moot, but only because the process is still
maturing. Generally, today's applications are tested for
penetration after QA testing, either immediately before
deployment, immediately following deployment, or both.
This makes a great deal of sense, since it is the production
application whose attack we are worried about, so it isn't
surprising that this is the near universal norm. The @stake
Hoover Project (http://www.sbq.com/sbq/rosi/-
index.html), which pioneered the concept of Return On
Security Investment (ROSI), illustrates precisely why an
over-reliance on this approach is inefficient and contra-
logical.

During the Hoover project, @stake studied the security
vulnerabilities of applications encountered during our
client application assessments. Using @stake�s
engagement data over an eighteen-month period, we
created anonymized security profiles for forty-five (45) e-
business applications and their potential risk to our
clients� business. Among other conclusions, we
determined that errors due to weak security design were
responsible for 70% of the all vulnerabilities we
identified. While implementation errors, including off-by-
one errors or improperly called routines, are generally
easy to repair, design errors frequently require major
overhauls of the application, and can take weeks and
months to implement sincerely and effectively. Most
companies continue to treat security as a �penetrate and
patch� activity typically performed after an application is
deployed, rather than integrating secure software
engineering practices into the entire development
lifecycle. This approach is financially wasteful, however,
as it means that significant errors can be integrated into
the structure of the application, such that their mitigation
requires significant redesign and redevelopment. The
direct losses in time spent on redevelopment are
compounded by the opportunity costs of the developers'
inavailability. Conceptually, the "penetrate and patch"
approach is akin to first constructing a skyscraper and
then testing it for stability. Security, like stability, must be
built in, it cannot be painted on or retrofitted.

Certainly we are not suggesting that developers forego
penetration testing of the final application. This would be
both irresponsible and foolish. To garner the highest
ROSI, however, it is critical to design applications
securely from the beginning of the development process.
This means penetration testing during all phases of the
application lifecycle and design elements that facilitate
clean testing. The application's problem statement itself
should be critically examined in a cost/benefit framework
that incorporates digital security as a component. The
requirements specification must be assessed for the
inclusion of appropriate security requirements to ensure
that technical and business needs are well synchronized.
Most importantly though, the application design must be
thoroughly "penetration tested" for vulnerabilities.
Proposed designs must be deconstructed and examined for
adherence to the essential maxims of security, including
segmentation, structural security, the principle of least
privilege and attention to input validation. Critical process
boundaries and privilege boundaries must be examined
carefully to ensure that the design incorporates sufficient
tactics for ensuring appropriate authentication,
authorization, confidentiality, integrity, non-repudiation,
and logging, and that proposed solutions are conscious of
information leakage and corollary risks.

Appropriate attention to security during the design
phase will significantly hamper the penetration tester's

http://www.sbq.com/sbq/rosi/index.html
http://www.sbq.com/sbq/rosi/index.html

ability to "fail to fail" by dramatically improving overall
application security. Problems identified during testing
will traditionally be easier and less expensive to fix, and
are less likely to represent critical vulnerabilities. While
rushed and overworked developers will be naturally
reluctant at first to add steps early in the development
lifecycle, such an approach will actually tend to
abbreviate the development cycle as a whole, initially by
reducing redevelopment requirements, but also because
"fat" design phases produce more detailed documentation
and more thoughtful designs that facilitate the
implementation phase. Transitioning to this process
requires developer training and should incorporate
outsourced Application Architecture Assessments with a
focus on knowledge transfer. As post-development
penetration testing becomes more of a commodity, the
artists will begin to ply their trade earlier in the
development lifecycle, and cutting edge businesses will
covet their work.

5 Coda

This duet, the art critic staring at the tide from the
mountaintop and the artist looking at the mountain while
standing in the surf, circumscribes penetration testing as it
is and will become � one part position and one part
momentum. As with any real challenge, knowing what
we know and knowing what we don�t know are of near
equal value.

We suggest that the takeaways, the thoughts to infect
others with, are these:

• Nobody likes surprises.
• Do not wait until your application goes live �

integrate security into your application from the
get-go.

• Assess security during design; before, during,
and after development; and prior to testing and
deployment.

• Security consulting firms can deliver focused
expertise to quickly identify your security needs,
and create a roadmap for implementing
solutions.

• More importantly, security consulting firms are
the only way you have to know how you
compare to others in your field as only a
consulting firm can combine trust-based data
acquisition with identity-protecting pooling of
that otherwise unobtainable comparability data.

	Art v. Science
	Characterization and Specialization
	Time Line and Drivers
	The Five W's of Application Penetration Testing
	Why
	Who
	What
	Prepare
	Analyze
	Document and Improve

	Where
	When

	Coda

