
Isolated Program Execution: An Application Transparent Approach for
Executing Untrusted Programs∗

Zhenkai Liang, V.N. Venkatakrishnan and R. Sekar
Department of Computer Science

Stony Brook University, Stony Brook, NY 11794.
{zliang, venkat, sekar}@cs.sunysb.edu

Abstract

In this paper, we present a new approach for safe exe-
cution of untrusted programs by isolating their effects from
the rest of the system. Isolation is achieved by intercepting
file operations made by untrusted processes, and redirect-
ing any change operations to a “modification cache” that
is invisible to other processes in the system. File read op-
erations performed by the untrusted process are also cor-
respondingly modified, so that the process has a consistent
view of system state that incorporates the contents of the file
system as well as the modification cache. On termination of
the untrusted process, its user is presented with a concise
summary of the files modified by the process. Additionally,
the user can inspect these files using various software util-
ities (e.g., helper applications to view multimedia files) to
determine if the modifications are acceptable. The user then
has the option to commit these modifications, or simply dis-
card them. Essentially, our approach provides “play” and
“rewind” buttons for running untrusted software. Key ben-
efits of our approach are that it requires no changes to the
untrusted programs (to be isolated) or the underlying oper-
ating system; it cannot be subverted by malicious programs;
and it achieves these benefits with acceptable runtime over-
heads. We describe a prototype implementation of this sys-
tem for Linux called Alcatraz and discuss its performance
and effectiveness.

1. Introduction
The widespread deployment of firewalls and related so-

lutions for network security has significantly raised the bar
for remote attacks on an enterprise network. However, even
the best perimeter solutions can be easily defeated by an at-
tacker that can induce users inside the enterprise to down-
load and execute malicious code. While virus detection and
similar techniques can be deployed to detect widely preva-

∗ This research is supported in part by an ONR grant N000140110967
and an NSF grant CCR-0208877.

lent instances of malicious code, such techniques are limited
in theory (by the fact that detection of malicious code is un-
decidable in general) as well as practice (by factors such as
the difficulty of object code analysis and encryption).

A more promising approach for defending against mali-
cious code is based on sandboxing, wherein the resource ac-
cesses made by untrusted code are suitably restricted to en-
sure security. However, use of such approaches in practice
has been hampered by the difficulty of policy selection: de-
termining resource access rights that would allow the code
to execute successfully without compromising system secu-
rity. Too often, sandboxing tools incorporate highly restric-
tive policies that preclude execution of most useful applica-
tions. The net result is that users end up choosing function-
ality over security, and thus execute untrusted code outside
such sandboxing tools, exposing themselves to unbounded
damage if this code turned out to be malicious.

An alternative to sandboxing is isolated execu-
tion, wherein the actions of untrusted code are isolated
from other applications. Isolated execution has previ-
ously been studied by researchers [15, 7] in the context
of Java applets. Such applets do not require much ac-
cess to system resources, other than being able to inter-
act with a user. Hence the implementation approach used by
these works relied on executing untrusted applets on a “re-
mote playground”, i.e., an isolated computer (other
than a user’s desktop). However, applications that per-
form more useful functions will require access to resources
such as the file system on the user’s computer. To pro-
vide such access, the entire environment on the user’s
computer, including file system contents, must be dupli-
cated on the remote playground.

Logical isolation, wherein the effects of a malicious pro-
cess are logically isolated from other processes, can achieve
the benefits of isolated execution without the drawback of
requiring dedicated hardware or solving the difficult prob-
lem of accurate duplication of environment. It was proposed
in [19] to permit continued operation of compromised pro-
cesses without alerting attackers and without risking dam-
age to the rest of the system, and in [11] in the context of



databases. The theory of data isolation was further devel-
oped systematically in [14] in the context of databases as
well as file systems, and isolation protocols that demon-
strate the feasibility of the approach were presented. How-
ever, practical issues that arise in implementing this ap-
proach on contemporary operating systems were not stud-
ied. In contrast, this paper develops an application- and
OS-transparent approach for isolated execution of untrusted
programs, and describes a tool called Alcatraz that imple-
ments this approach on the Linux operating system.

Our approach permits untrusted applications to access
the entire file system that is accessible to the end users,
thereby making it possible for most applications to carry
out their tasks. Using a copy-on-write semantics, modifica-
tions to the file system that are performed by the untrusted
application are hidden from the rest of the system, which
ensures that malicious actions of the untrusted code will not
compromise the integrity of the system. Accesses to non-
file resources are restricted as needed to ensure integrity. At
the completion of execution, the users can inspect the ac-
cesses made by the untrusted code to see if it changed any
files of interest to them, and if so, examine these changes. If
the users are convinced that these changes are benign, then
they can commit these changes, so that they become visi-
ble to the rest of the system. Otherwise, the users can abort
these changes. The key benefits of our approach are:
• Application and operating system transparency. Our ap-

proach requires no changes to the underlying operating
system or the untrusted application itself. Moreover, the
technique can be applied regardless of whether the files
accessed by the application are local, or are located on
a remote file server.

• Secure yet application-friendly. Our approach provides
security against malicious code without imposing un-
due restrictions on such code. This makes it possible
for a large class of existing software to execute success-
fully, unlike sandboxing based approaches.

• Convenient and user-friendly. Our approach provides a
compact summary of the file system resource accesses
made by untrusted code at the end of its execution. This
contrasts with sandboxing approaches that prompt users
on each file access disallowed by the sandbox policy. In
addition, the user is given the ability to examine these
files to determine whether the application carried out the
functionality that the user wanted.

Our implementation does not require the users of our system
to possess administrator privileges. It imposes modest over-
heads for isolation (below 20% for all the applications we
have studied). However, the mechanism we have used for
system call interposition poses moderate overheads, ranging
from under 10% for CPU-intensive applications to nearly
100% for I/O-intensive applications.

The description in the rest of the paper is set in the con-

text of Linux, but the techniques are applicable to most
modern operating systems. The organization of the rest of
paper is as follows. We begin with two motivating examples
in Section 1.1. Section 2 provides an overview of the sys-
tem design, followed by more detailed descriptions of the
system components. Implementation results are discussed
in Section 3, followed by related work in Section 4. Finally,
concluding remarks appear in Section 5.

1.1. Motivating Examples
Photo organizer. Consider an application that scans spec-
ified directories for image files and generates photo album
files that are written to the same directories. It also gener-
ates thumbnail pictures from these files (for creating index
files) and has the ability to modify/resize these files. Simi-
lar applications that modify images and other media such as
audio files are available as freeware on the Internet, e.g., the
picturepages [21] package. Safe execution of such ap-
plications poses two challenges for sandboxing approaches.
• policy selection: Users have to anticipate the resource

access requirements of a program prior to its execu-
tion, which is often difficult. To overcome this problem,
some sandboxing approaches allow changes to policies
through runtime prompts to the user: when the sand-
boxed application violates the initially specified pol-
icy, the user is informed and queried whether he/she
wants to permit this access. Unfortunately, such re-
peated prompts lead to “click-fatigue,” as a result of
which the user simply grants (or refuses) all subsequent
prompts without reviewing them.

• policy granularity: Users need to develop policies that
permit an application to access the resources that it
needs, while ensuring that these resources are not cor-
rupted or deleted. For the photo organizer example, such
a policy would have to permit “legitimate” changes to
image files, as needed for resizing images or including
previews, while disallowing other changes. Develop-
ment of a policy that can capture such legitimate trans-
formations is likely to be hard. Even if such policies can
be expressed, enforcement of such policies is likely to
be inefficient, if not impossible [18].

Due to these difficulties, sandboxing policies tend to be con-
servative and often disallow a large class of useful programs
such as the picturepages program. In contrast, our pro-
posed approach will permit execution of programs as long
as they don’t make system changes other than file modifica-
tion operations. Most applications observe this constraint,
and hence they can be run safely using isolation. Moreover,
users need not develop safety policies ahead of time. Fi-
nally, they have the opportunity to examine the system state
resulting due to the execution of the untrusted program, and
then decide whether to “keep” or “rollback” these changes.
They can use standard system utilities such as find and



diff, as well as arbitrary helper applications such as im-
age viewers, to examine the system state.

Software installation. Users are all too familiar with
poorly packaged software that crashes during its installa-
tion, or simply does not function correctly. Even worse,
the new package may “break” other applications in-
stalled on the system. In all these cases, the users are
faced with the daunting task of rolling back the instal-
lation. If the package made use of standard package
management utilities, this rollback is usually not burden-
some. However, if the package came as a self-installing
executable or as a source package, rollbacks are al-
most always very difficult. The package may install its
files into standard directories such as /usr/local/bin
and /lib. It may also modify system configuration files
such as /etc/passwd, /etc/mime.types or user pro-
file files such as ˜/.bashrc. Identifying the exact set
of files that were modified is cumbersome. It is also
prone to errors as the user does not know the directo-
ries where the package installed files, and hence has to
search the entire file system. This may result in identify-
ing many files that may have been modified by applications
other than the installer. Even if the modified files are identi-
fied correctly, rollback is still a hard problem: it is possible
only if the user had backed up modified files, but unfor-
tunately, the user did not know ahead of time which files
would be modified by the installation.

Using our isolation approach, all of the above problems
can be tackled easily. Users simply install the package in
isolation. Within this isolation environment, users can then
try out the package. They can also examine the files mod-
ified by the package, and see if it includes security-critical
files, or files that may be used by other packages. (System
configuration databases, such as the Redhat Package Man-
ager database, can help in identifying files used by other
packages.) If so, they can examine these files to identify the
changes made. Alternatively, they can try out the applica-
tions that depend on these modified files to ensure that they
are not broken. If the users are convinced, after making all
these checks, that the new package has been installed cor-
rectly and is functioning properly, they can commit the in-
stallation. Otherwise they can can discard the installation —
at this point, the file system state will be as if the installa-
tion never took place.

2. System Description
2.1. Technical Goals and Design Approaches

The goal of logical isolation is to preserve system in-
tegrity.1 In particular, if the file system changes made by an

1 Confidentiality can be preserved to the extent the untrusted applica-
tion can be prevented from making network communications, but this

untrusted application were not committed, then the integrity
of the system must not be compromised by this application.
Moreover, there should be no data loss, such as the loss as-
sociated with rolling back the effects of other system and
user processes. In effect, the system state should be as if the
untrusted application was never run.

Our approach is focused on preserving the contents of
the file system. However, in order to ensure overall sys-
tem integrity, we also need to consider operations other than
those involving file systems. Such operations must be pre-
vented from being executed if they can change the system
state. We need to be conservative in determining whether
an operation can change system state: unless we know for
sure, an operation made by an untrusted process must be
disallowed. A simple implementation of such a conserva-
tive approach may disallow all network communications (as
they can modify the state of other hosts), file operations that
modify devices, etc. A more usable approach will recog-
nize a subset of these operations that do not change sys-
tem state, and permit them. For instance, it is reasonable
to consider that DNS queries do not modify system state.
Similarly, sufficient intelligence may be built into the im-
plementation to recognize and permit certain device-level
operations that query system state without modifying it.
More generally, service-specific proxies may be built that
can forward those service requests that do not change sys-
tem state, while disallowing other requests. Such service-
specific proxies may be built to access X-windows, web
servers, audio devices, etc. For the rest of this paper, we
do not discuss such service-specific proxies, but focus on
achieving file system level isolation.

In our approach, file-level isolation is achieved using iso-
lation contexts. An isolation context can be thought of as a
“private copy” of the entire file system. It is implemented
using a copy-on-write technique, so that its storage require-
ment is proportional to the changes made within the isola-
tion context, and not on the size of the entire file system. A
new isolation context is created when an untrusted process
is about to be executed. If this process creates child pro-
cesses, then all such children and their descendants are ex-
ecuted within the same isolation context. This ensures that
the untrusted process and its descendants have an identical
(and consistent) view of the file system state. Multiple un-
trusted applications may be executed independently, each
within its own isolation context2.

To implement isolation contexts, file system changes
made by an untrusted process are redirected so that they
do not change global system state. Such redirection may be
built into the application itself or within the system libraries

is not our main goal in this paper.
2 Copy-on-write provides one-way-isolation, i.e., changes made within

an isolation context are shielded from the rest of the system, but the
changes made outside of isolation contexts may be visible inside.



System Call Interceptor Manager

CWD
Tracking

GUI
Untrusted
Processes

Engine
Isolation 

Modification 
Cache

Confinement
Engine

Alcatraz

Operating System

Mapping
Table

Figure 1. System Architecture

that are used to access files. Neither approach is satisfactory,
since they require the applications to be trusted. In particu-
lar, a malicious application can bypass such redirection, and
make direct access to the system calls provided by the OS
for manipulating files. We therefore rely on OS-level mech-
anisms that can support secure redirection. There are two
main choices in this regard:
• System-call interposition: Since all accesses to system

resources (including accesses to files, devices and the
network) are effected through system calls, interposing
at this level provides a secure way to achieve isolation.

• Interposition at the VFS layer: The Virtual File System
layer provides an abstract interface within the OS ker-
nel for accessing all file systems. One benefit of inter-
posing at this layer is that of higher performance: only
file system operations are interposed, as opposed to all
system calls.

Of these choices, we have adopted system call interposition
for two reasons. First, it can be implemented without requir-
ing changes to the operating system. Indeed, the ptrace
mechanism in Linux permits ordinary users to intercept sys-
tem calls made by their processes, without requiring them
to make any OS-level changes that need superuser privilege.
Second, as discussed earlier, we need to monitor non-file
operations made by the untrusted process, and hence sys-
tem call interposition would be necessary even if file level
isolation were implemented using VFS interposition.

2.2. System Overview
The architecture of our system, called Alcatraz, is shown

in Figure 1. The isolation engine consists of several com-
ponents. The manager module coordinates the operations
of the isolation engine. It uses the modification cache as a
scratch-pad area where new files (or directories) created by
the untrusted process are held. The modification cache is
a dedicated area within the file system, and uses a distinc-

tive name so that multiple Alcatraz sessions can run on the
same system. For files (and directories) stored in the modifi-
cation cache, the mapping table provides the translation be-
tween file names used by an untrusted process and their cor-
responding names within the modification cache. The table
also records other information pertaining to modified files,
e.g., whether a file is deleted.

Note that the isolation engine holds all the information
about modifications to the file system, and the operating
system kernel does not know about these changes. There-
fore the isolation engine needs to modify the arguments
and/or the return values of system calls that access files.
In particular, when a system call is invoked in an isolated
process, the system call interceptor sends a notification to
the manager module. The manager module handles file sys-
tem modification operations, while forwarding the rest of
the system calls to the confinement engine. If the file opera-
tion refers to objects that have been modified, then the man-
ager modifies the path name argument so that it refers to
the modified object located within the modification cache.
These (possibly modified) arguments are returned back to
the system call interceptor. When the system call returns,
the manager module is once again notified, so that it may
modify the results returned by the system call as necessary.

The mapping table maps one absolute file name into an-
other. However, not all the system calls are invoked with ab-
solute path names. Hence file names must be resolved into
absolute path names, with symbolic links expanded, and the
“.” and “..” entries resolved. The CWD Tracking mod-
ule helps this process. It maintains the current working di-
rectory of each process and updates them when a process
makes a system call that results in changes to that direc-
tory. The current working directory of a parent process will
be inherited by its children.

After the untrusted process finishes execution, the isola-
tion engine invokes a GUI (graphical user interface), which



Read Only Modification Operations
Operations Regular Files Directories Inodes

execve, chdir, access, chroot,
readlink, uselib, statfs, stat,
lstat, stat64, lstat64, oldstat,
getdents, getdents64, readdir

open,
truncate,
truncate64

creat, link, unlink,
mknod, rename, mkdir,
rmdir, acct, symlink,
open

chmod, lchown,
utime, oldlstat,
chown, lchown32,
chown32

Figure 2. Classification of System Calls

presents a compact summary of the security relevant actions
made by the process. If these changes are accepted by the
user, then they are “copied over” so that they become visi-
ble to other processes in the system. Criteria for determin-
ing whether such copying can be done while preserving iso-
lation semantics is described later in the paper. Below, we
describe the key components of Alcatraz in further detail.

2.3. Manager

As mentioned above, the key problem in implementing
the isolation engine is that of modifying file-related system
calls in a manner that provides a consistent view of the sys-
tem state to the isolated process. This becomes a challeng-
ing task when we consider the different kinds of file sys-
tem objects (regular files, directories, symbolic links, etc.)
and the large number of file system related operations (34
out of the 243 system calls in Linux kerner version 2.4.18).
To tackle this complexity, we make the following observa-
tions about the kinds of file system objects that need to be
considered: regular files, directories, symbolic links, and In-
odes. (Inodes contain meta data about files, such as per-
mission, ownership etc.) File modification operations may
be different across these file types. For example, regular
files are viewed as a stream of bytes, and can be modi-
fied by seeking to any location (expressed as a byte offset)
within the file, and performing a write system call. Direc-
tories, on the other hand, are viewed as a sequence of direc-
tory entries, which are records containing information about
the files within the directory. For symbolic links, the only
modificationis that of file deletion. In this sense, it is noth-
ing more than a directory modification operation. Thus, we
need only consider three kinds of objects on the file sys-
tem: regular files, directories, and Inodes.

Now consider the system call operations on the file sys-
tem. For the isolation operation, we need to consider only
those system calls that are path name related. System calls
that operate on file descriptors (e.g., read, write and
mmap) can be left to the operating system to handle. Path
name based operations can be classified as shown in Fig-
ure 2 based on whether they modify the file system and the
object modified. Since the manner in which “read” opera-
tions are implemented is determined by the way modifica-
tions are implemented, our description below is organized

by the three categories of modification operations.

Regular file modifications. Consider a process that opens
a file f for writing. A natural way to isolate the execu-
tion of the process is to create a new copy f ′ of f that is
stored within the modification cache. All future accesses to
f , whether they be modifications or reads, will be redirected
to f ′. To enable this redirection, an entry associating f with
f ′ is inserted into the mapping table. An optimization that
avoids copying of files is possible in the common case when
a file is truncated to zero length at the open.

Directory modifications. The above simple implementa-
tion of copy-on-write does not directly extend to directo-
ries. In particular, there is no way to copy a directory into
the modification cache without copying the files and direc-
tories contained within. The problem can be partially over-
come by creating a new, empty directory in the modification
cache, and creating hard links from this directory to every
file in the original directory. However, Linux disallows cre-
ation of hard links to directories, so this approach will not
work when subdirectories are involved. Clearly, the alterna-
tive of copying the entire file system contents rooted at the
current directory would be far too inefficient.

To develop a more efficient approach for copy-on-write,
we observe that unlike a regular files, directories are ac-
cessed in a structured manner using specialized directory
operations such as mkdir and getdents. Thus, our ap-
proach is one of modifying these operations in a manner that
achieves copy-on-write semantics without having to per-
form actual copies of directory contents. In particular, modi-
fications to directories, such as creation/deletion of new files
or directories, are recorded in the modification cache.

When the contents of such modified directories are read
using the getdents operation, we can modify the returned
directory entries as follows. Any directory entry f that is
mapped into f ′ by the mapping table is replaced so as to
contain the information about f ′. If the file f has been
deleted by the isolated process, then the entry correspond-
ing to f is deleted from the getdents return value. It is
possible that all the entries returned by getdents may be
deleted in this step. If, as a result of this, no entries are re-
turned to the isolated process, it would conclude that the end
of the directory has been reached. (This is how getdents



works under Linux.) To solve this problem, the manager
first retrieves all of the directory entries in the directory, and
applies the above changes to the directory entries. We then
append new directory entries that are recorded in the mod-
ification cache but not present in the rest of the file system.
The result is returned to the isolated process.

Inode modification. Modification can also be made to In-
odes which store file system meta data. Inodes are associ-
ated with files and cannot be copied separately. Therefore,
if the modification is made to a file that has already been
copied to the temporary location (i.e., just created or mod-
ified file), we can redirect this operation to its counterpart
in the temporary location. If the modification is made to
an unchanged regular file, we can again copy the file into
the modification cache and proceed as in the previous case.
However, this approach does not work on directories be-
cause, as mentioned in the preceding section, we cannot
copy a directory. One possibility is to use the isolation layer
to record the changed Inode information of directories and
let all related system calls make use of this information.
However, this solution is not very useful in all cases, as the
kernel does not know about the existence of such informa-
tion. For example, if the untrusted program adds write per-
mission to an existing directory, using this approach, this
change will be stored in the isolation layer, but the kernel
will still not allow it to write into that directory because this
changed permission information is not visible to the kernel.
In our implementation, the isolation layer records an error
message in such situations, and allows continued execution
of the isolated process. This limitation has not posed a sig-
nificant problem in practice, since it is very unusual for un-
trusted code to change permissions on the directories that
were not created by it.

Since the latest Inode information is held within the iso-
lation layer, system calls to access or manipulate meta data,
such as stat, need to be intercepted by the manager and
redirected if necessary. Moreover, since the correct permis-
sion information is not available to the file system, permis-
sion checking needs to be handled by the isolation layer.
To understand the need for this, consider the case when the
isolated process modifies a file that it does not own but has
the write permission. The isolation engine will copy the file
into the modification cache before making these changes.
During copying process, the operating system will automat-
ically set the ownership of the copy to that of the owner of
the isolated process. It would be preferable to change the
ownership back to the owner of the original file, but this
will be disallowed by the kernel unless the isolation engine
runs with root privileges. Since it was one of our design
goals to support isolation without requiring superuser priv-
ileges, we cannot change the ownership information on the
file. This means that the OS will interpret the permissions
incorrectly, thus requiring the isolation engine to take over

this task.

2.3.1. Confinement Engine The untrusted program may
perform other operations that are unrelated to the file sys-
tem. Some of these operations do not cause difficulties in
preserving isolation semantics, e.g., system calls for obtain-
ing timing information, process ownership, host attributes,
etc. Others, such as those involving network communica-
tion or interaction with processes outside its isolation con-
text, will pose a problem. It is the responsibility of the con-
finement engine to deal with all system calls that are unre-
lated to file systems. It determines which system calls can
be permitted without compromising the isolation semantics.

The confinement engine is built from security policy
specifications that specify which system calls can be per-
mitted, and in what context. These policies are specified us-
ing a language called BMSL (Behavior Monitoring Specifi-
cation Language) [20, 22]. BMSL can express describe con-
ventional access control policies, history sensitive policies
(e.g., an application cannot access the network after reading
sensitive files) and resource usage policies (e.g., an applica-
tion can write no more than k bytes of data). These policies
are compiled using the BMSL compiler to produce the con-
finement engine. A detailed description of BMSL syntax,
semantics, and compilation can be found in [22].

The confinement engine currently disallows networks re-
quests such as web access, DNS queries, and X-windows
operations. As outlined earlier, these limitations can be re-
laxed using service-specific proxies. For instance, we can
have a proxy that receives DNS requests from the isolated
process, and forwards them to the DNS server if it can be as-
certained that this query will not change the system state.

2.4. System Call Interceptor
The system call interceptor is implemented in such a way

that it is easily portable to other Unix variants (that do not
support ptrace for instance). The architecture of our inter-
ceptor is based on the design presented in [10].

The implementation of the interceptor (the tracing pro-
cess) is based on Linux’s ptrace system call, which al-
lows one process, called the monitoring process to trace an-
other process, called the monitored process. Tracing capa-
bilities include the ability to intercept system calls made by
the monitored process, and examination or modification of
the virtual memory of the monitored process. When using
ptrace for monitoring and confining untrusted processes,
we face a number of difficulties that can compromise secu-
rity. Below, we summarize how our implementation tackles
these difficulties.

Rogue processes may cause the interceptor to terminate.
A malicious process may try to terminate the process that
is monitoring it. For instance, it can send a kill signal to
the monitoring process. However, this must again be done



through a system call, which will be intercepted and aborted
by the montoring process.

Fork/clone race condition. When a monitored process ex-
ecutes a fork system call, the child process is not traced au-
tomatically. The monitoring process must explicitly request
tracing of the child process by invoking ptrace with the
child PID (process identifier) as an argument. However, the
child PID is unavailable until the fork system call returns
to the parent. By then, it is possible that the child process
may have started running, and executed system calls that the
monitoring process would not permit. To solve this problem
we adopt a clever trick that was devised in the strace [3]
program. Specifically, when the monitoring process inter-
cepts the parent’s entry into fork system call, it replaces the
the instruction in the parent’s code at its instruction pointer
(IP) with a loop instruction. Note that the child will inherit
this code, as well as the value of IP. This means that when
control returns to the child, it will execute the loop instruc-
tion, and hence will be stuck in an infinite loop. In partic-
ular, it won’t be able to make any system calls. When the
fork system call returns to the parent, the monitoring pro-
cess obtains the child PID, and issues a ptrace system call
to attach to the child. It then restores the original instructed
that was stored at the instruction pointer, so that the child
process can continue with its normal execution, but now un-
der the control of the monitoring process.

Even after the above enhancement, there still exists a
possibility of a race condition: if the child process receives
a signal, this will interrupt the loop and cause execution of
its signal handler, which can execute system calls that may
not be permitted by the monitor. To prevent this possibil-
ity, we note that if another process intentionally cooperates
with the child process to free it, then that process must it-
self be an untrusted process under the control of the moni-
toring process. The system call used by the cooperating pro-
cess to send a signal can then be intercepted by the monitor
and delayed until it has control of the child process.

Argument race condition. There is a delay between the
time when the arguments of a system call is checked by the
monitoring process and the time when the arguments are
actually read by the kernel. If the arguments are stored in
a memory region shared by several processes or threads, it
is possible for these processes/threads to modify the argu-
ments during that time delay. We address this problem by
moving security-critical arguments to a random location on
the stack [10]. In order for the attack to succeed in spite
of this change, collaborating threads (or processes) need to
scan the entire stack to find the location where the argument
is stored, and this scan must be completed within the short
interval between the time when arguments are checked by
the monitoring process and the time they are used by the
kernel. If the random number is chosen over a reasonably

Figure 3. Graphical User Interface

large range, e.g., 10
7 or 10

8, then the likelihood of success-
ful attacks becomes very small.

2.5. User Interface

After the isolated process and its children finish execu-
tion, the information maintained in the mapping table is
sent to the user interface (GUI). The GUI sorts/groups file
changes by path names, and then presents them to the user
in a tree like representation as shown in Figure 3. The user
can select the kinds of changes that they wish to see, e.g.,
new files created, files overwritten, etc. For modified files,
users can view the difference between the original and the
new version by simply clicking on the file name.

Optionally, the user can use a shell that runs in the same
isolation context as the untrusted process, but has access to
the original file system through the /alcatraz virtual di-
rectory. Moreover, the children of this shell are permitted
to access X-windows, so that arbitrary helper applications
(e.g., image viewers) can be launched by the user to view
the modified files.

2.5.1. Commit Criteria. After examining the changes
made by the untrusted process, a user can determine
whether these changes can be committed to the sys-
tem. However, it is possible that other processes, running
outside of the isolation context of the untrusted pro-
cess, may have made modifications to the file system. If
these changes interfere with the changes made by the un-
trusted process, then commitment of the changes made
by the untrusted process can lead to an inconsistent sys-
tem state. Hence, we adopt an approach in which the com-
mit operation is allowed to go through only if the files
modified by the isolated process were neither read nor writ-
ten by outside processes since the instant the files were first
accessed by the isolated process.

It may seem that this approach is too conservative and
may reject results that can be consistently committed. While
this may be true, we observe that aborts do not cause too



much difficulty in Alcatraz. In particular, the untrusted pro-
gram can be executed again. Since the changes made by
the untrusted program were discarded, rerunning the pro-
gram will likely produce the same results. At this point, the
same interference may not have taken place (assuming that
such interference was a rare coincidence), and hence the re-
sults can be committed.

Our current implementation of commitment contains a
race condition. In particular, interference (by processes out-
side of isolation) may happen during the time files are
copied from the modification cache to the file system. This
race condition can be avoided using file system locks. Un-
fortunately, mandatory locks are not supported by default
on Linux due to the possibility that they may lead to dead-
locks. If this were not the case, then the race condition can
be avoided. In practice, however, we note that the race con-
dition is not a significant problem in the context of untrusted
program execution, as it is unlikely that the files accessed
by such a program would also be accessed by other unre-
lated processes, that too within the short period taken for
file copying.

3. Implementation results
We have implemented Alcatraz on the Linux operating

system [1]. The implementation has been tested on Red Hat
Linux 7.2 and Red Hat Linux 8.0 distributions. The perfor-
mance figures given below were obtained on a PC running
Red Hat Linux 7.2 on a 1.7GHz P4 processor with 1GB
memory.

3.1. Example Applications
Our implementation was tested with three applications:

two freeware program that organize image/audio files, and
the installation of a software package.

Picturepages is a photo organizing program discussed
in Section 1.1. We tested it with a directory of jpeg photos.
Alcatraz reported the creation of a directory and changes to
the picture files. We further used an image viewer to exam-
ine some of the generated pictures to make sure that they
were properly modified.

The second program that was used is mpls, which takes
a list of mp3 files and creates a playlist sorted by artist, al-
bum, track, or title on the standard output. A directory con-
taining various mp3 files was used as the input. After the
program finished execution, the user-interface presented a
report that summarized that no changes were made to the
file system.

The third program we tested was the installation of
mozilla, a free web browser. The installation program
modified three configuration files of a previous version
of mozilla and installed all files into a new directory.
All these changes were captured by Alcatraz and reported
through the user interface, as shown in Figure 3.

In all these examples, the isolation operation guaranteed
the safety of the user’s resources, as well as provided the
convenience of concise summaries on the outputs of these
executions.

3.2. Performance results
We have measured the performance using two sets of ap-

plications. The first set of applications are the above exam-
ples. The second set included common UNIX utilities such
as make gcc, gzip, ghostscript, and tar.

The following testing data was used:
• for make gcc, we compiled the openssh package ver-

sion 3.7p1 under isolation. It contained 69849 lines of
C code.

• for tar, a directory tree containing several mp3 files
were used as the input for the archive operation. The
size of output file was 85MB.

• for gzip, the output of the above tar command was
used as input.

• for ghostscript, a 10-page paper, containing 170K
bytes, was used as the input.

In order to know how each module in Alcatraz contributes
to the overhead, we performed three time measurements of
the sample application. They are the execution time with-
out any system call interception, the execution time with
only the system call interceptor, and the execution time with
full isolation system, respectively. The normalized execu-
tion time (ratio to the execution time without isolation and
without system call interposition) is shown in Figure 4.

From the performance results, we can see that the isola-
tion mechanism itself (the difference between the overhead
of “Interception Only” and the overhead of “Isolation”)
contributes to a modest overhead of less than 20%. How-
ever, the system call interposition mechanism contributes
to a significant overhead for some programs. This over-
head varies linearly with the frequency of system calls made
by an application. Compute-intensive applications such as
gzip and picturepages make much fewer system calls
per unit time of execution, while other applications such as
tar make system calls at a much higher rate.

System call interception overhead can be significantly
reduced (to under 10%) using an in-kernel implementation.
However, if we had based Alcatraz on kernel-based inter-
ception, it would be harder to port, and moreover, cannot be
downloaded, installed or run by users that do not have supe-
ruser privilege. Compared to this drawback, the additional
overhead seems to be quite acceptable for the class of ap-
plications targeted by Alcatraz.

4. Related work
Sandboxing systems. Janus [9] incorporates a /proc file
system based system call interposition technique for the So-



Interception Only
Isolation

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

mozilla
Installation

mplspicturepages

 0

 0.5

 1

 1.5

 2

1.01 1.02

1.60

1.80 1.79 1.92
Interception Only
Isolation

make and
gcc

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

ghostscript tar gzip
 0

 0.5

 1

 1.5

 2

1.321.26

1.77 1.80

1.01 1.02

1.43

1.61

(a) Downloaded program examples (b) Common Unix applications

Figure 4. Normalized Performance Results

laris operating system. A more recent version has been im-
plemented on Linux, and uses a kernel module for interpo-
sition. Chakravyuha [8] is a monitoring system that uses a
kernel interception mechanism to implement a sandboxing
approach. MAPbox [4] is a sandboxing mechanism where
the goal is to make the sandbox more configurable and
usable by providing template classifications of behaviors.
Consh [5] provides a similar sandboxing environment while
addressing transparent local and remote access to files.

SoftwarePot [12] incorporates a secure software circula-
tion model that confines the behavior of the untrusted pro-
gram. In this case, the software to be run is encapsulated
with a file system. The user must encapsulate the complete
list of the file system resources needed by the program in
order to make it execute successfully. Furthermore, all the
operations to the files are confined to the “pot” archive.
The scheme still requires apriori policy selection, which (as
pointed out in the introduction) is often difficult.

Systrace [16] is a sandboxing system that notifies the
user about all system calls that an application tries to ex-
ecute. It then uses the response from the user to generate a
policy for the application.

The disadvantages of sandboxing approaches, as com-
pared to isolation, was discussed in Section 1.1.

Isolation systems. [15] and [7] use physical isolation to
protect against damages to the client’s machine. The incom-
ing mobile code (java applet) is sent to another set of ma-
chines, called “playground” (some machines containing no
important data), to execute. As mentioned in the introduc-
tion, these two systems only target Java applets (which only
constitutes a small fragment of the large body of untrusted
code on the Internet), require additional resources (such as
new machines), and disallow any access to the user’s en-
vironment. In contrast, our approach is language indepen-
dent, and requires no additional physical resources and al-
lows safe access to the user’s environment.

Logical isolation provides many benefits over physi-

cal isolation. It has been suggested before and analyzed
[14, 11, 19]. Algorithms and protocols for realizing logi-
cal isolation in the context of databases as well as file sys-
tems was presented in [14]. In the file system context, it de-
scribed isolation protocol, merging protocol, and an algo-
rithm for resolving conflicts. However, practical issues that
arise in implementing the approach on a modern operating
system were not considered. Our work in this paper com-
plements these works, and developing an application- and
OS-transparent approach for practical approach and tool for
realizing logically isolated execution of programs.

Recovery-oriented systems. The Recovery-Oriented
Computing (ROC) project at Berkeley [2] is develop-
ing techniques for fast recovery from failures, focusing
on failures due to operator errors. [6] presents a broad ap-
proach that assists recovery from operator errors in
administering a network server, with the specific exam-
ple of an email server. In spite of the apparent similarities
in the goals of this work and ours, the technical require-
ments are quite different. They target network-oriented ap-
plications whose actions (and their effects) needs to be
visible to other processes and/or hosts. In contrast, our ap-
proach targets file-oriented applications whose actions
should be invisible to the rest of the world.

[23] presents an approach for safe execution of malicious
applications on Microsoft Windows by intercepting oper-
ations made by the malicious code. Their approach is to
create backup copies of files before they are modified by
the malicious application. A drawback of this approach, as
compared to ours, is that the modifications are visible to
other benign processes in the system. If a benign process
modifies the system based on the files modified by the ma-
licious process, then there may be no way to undo these ef-
fects. In contrast, our approach ensures that the actions of
the isolated process(es) do not corrupt the system.



File system approaches. The Elephant file system [17] re-
tains all the important versions of a file, and has an interface
for users to select a specific version. RFS (Repairable File
Service) [24] is specifically designed to facilitate repair of
a compromised network file server by maintaining previous
versions of files. These approaches generally have a signif-
icant storage overhead, since storing versions can consume
significant additional space. In contrast, our approach does
not impose high storage overheads. More importantly, our
isolation approach provides a simple, automatic approach
to undo the effects of a malicious process. In contrast, the
undo step typically requires manual assistance in the case
of versioning approaches. Moreover, there is no easy way
to undo the effects of a malicious process without risking
loss of data, which may occur due to the fact that some ac-
tions of benign processes are rolled back as well.

3D file system [13] provides a convenient way for soft-
ware developers to work with different versions of a soft-
ware package. It also introduces a technique called trans-
parent viewpathing which is based on translating file names
used by a process. It gives a union view of several direc-
tory structures thus allowing the application transparently
access one directory through another’s path. As it is not de-
signed to deal with untrusted applications, it needs the co-
operation from the application for this mechanism to work,
while our approach provides a mandatory isolation layer for
the untrusted program.

5. Summary
In this paper, we presented an approach that supports

safe execution of untrusted programs. Our approach uses
the idea of logical program isolation, where actions of the
code are invisible to the rest of the system until they are
committed by a user. Before committing, the user can in-
spect the system state to determine if the actions of the pro-
gram compromised the integrity of the system. We have pre-
sented a tool called Alcatraz [1] that incorporates this ap-
proach. Our approach provides security for the end-user and
enjoys many benefits such as application transparency and
user friendliness. We have discussed the design and imple-
mentation and presented the results of our implementation.

References
[1] Alcatraz. http://www.seclab.cs.sunysb.edu/alcatraz.

[2] Recovery-oriented computing. http://roc.cs.berkeley.edu.

[3] Strace. http://www.liacs.nl/˜wichert/strace.

[4] A. Acharya and M. Raje. Mapbox: Using parameterized be-
havior classes to confine applications. In USENIX Security
Symposium, 2000.

[5] A. Alexandrov, P. Kmiec, and K. Schauser. Consh: A con-
fined execution environment for internet computations, 1998.

[6] A. Brown and D. Patterson. Undo for operators: Building an
undoable e-mail store. In USENIX Annual Technical Confer-
ence, 2003.

[7] T. Chiueh, H. Sankaran, and A. Neogi. Spout: A transpar-
ent distributed execution engine for java applets. In Interna-
tional Conference on Distributed Computing Systems, 2000.

[8] A. Dan, A. Mohindra, R. Ramaswami, and D. Sitaram.
Chakravyuha: A sandbox operating system for the controlled
execution of alien code. Technical report, IBM T.J. Watson
research center, 1997.

[9] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A se-
cure environment for untrusted helper applications: confin-
ing the wily hacker. In USENIX Security Symposium, 1996.

[10] K. Jain and R. Sekar. User-level infrastructure for system call
int erposition: A platform for intrusion detection and con-
finement. In ISOC Network and Distributed System Secu-
rity, 2000.

[11] S. Jajodia, P. Liu, and C. D. McCollum. Application-level
isolation to cope with malicious database users. In ACSAC,
1998.

[12] K. Kato and Y. Oyama. Softwarepot: An encapsulated trans-
ferable file system for secure software circulation. In Proc.
of Int. Symp. on Software Security, 2003.

[13] D. G. Korn and E. Krell. A new dimension for the unix file
system. Software: Practice & Experience, 20(S1), 1990.

[14] P. Liu, S. Jajodia, and C. D. McCollum. Intrusion confine-
ment by isolation in information systems. Journal of Com-
puter Security, 8, 2000.

[15] D. Malkhi and M. K. Reiter. Secure execution of java applets
using a remote playground. Software Engineering, 26(12),
2000.

[16] N. Provos. Improving host security with system call policies,
2002.

[17] D. J. Santry, M. J. Feeley, N. C. Hutchinson, and A. C.
Veitch. Elephant: The file system that never forgets. In Work-
shop on Hot Topics in Operating Systems, 1999.

[18] F. B. Schneider. Enforceable security policies. ACM Trans-
actions on Information and System Security, 3(1):30–50,
2000.

[19] R. Sekar, Y. Cai, and M. Segal. A specification-based ap-
proach for building survivable systems. In National Infor-
mation Systems Security Conference, Oct 1998.

[20] R. Sekar and P. Uppuluri. Synthesizing fast intrusion pre-
vention/detection systems from high-level specifications. In
Proceedings of the USENIX Security Symposium, 1999.

[21] K. Sitaker. http://www.canonical.org/picturepages.
[22] P. Uppuluri. Intrusion Detection/Prevention Using Behavior

Specifications. PhD thesis, Stony Brook University, 2003.
[23] J. A. Whittaker and A. D. Vivanco. Neutralizing windows-

based malicious mobile code. In Symposium on Applied
Computing, 2002.

[24] N. Zhu and T. Chiueh. Design, implementation, and evalua-
tion of repairable file service ,. In The International Confer-
ence on Dependable Systems and Networks, 2003.


