Automated and Safe Vulnerability Assessment

Fanglu Guo

Yang Yu

Tzi-cker Chiueh

Computer Science Department, Stony Brook University, NY 11794
Rether Networks Inc., Centereah, NY 11720
{fanglu, yyu, chiueh} @cs.sunysb.edu

Abstract

As the number of system vulnerabilities multiplies in re-
cent years, vulnerability assessment has emerged as a pow-
erful system security administration tool that can identify
vulnerabilities in existing systems before they are exploited.
Although there are many commercial vulnerability assess-
ment tools in the market, none of them can formally guaran-
tee that the assessment process never compromises the com-
puter systems being tested. This paper proposes a feather-
weight virtual machine (FVM) technology to address the
safety issue associated with vulnerability testing. Compared
with other virtual machine technologies, FVM is designed
to facilitate sharing between virtual machines but still pro-
vides strong protection between them. The FVM technol-
ogy allows a vulnerability assessment tool to test an ex-
act replica of a production-mode network service, includ-
ing both hardware and system software components, while
guaranteeing that the production-mode network service is
fully isolated from the testing process. In addition to safety,
the vulnerability assessment support system described in
this paper can also automate the entire process of vulner-
ability testing and thus for the first time makes it feasible to
run vulnerability testing autonomously and frequently. Ex-
periments on a Windows-based prototype show that Nes-
sus assessment results against an FVM virtual machine are
identical to those against a real machine. Furthermore,
modifications to the file system and registry state made by
vulnerability assessment runs are completely isolated from
the host machine. Finally, the performance impact of vul-
nerability assessment runs on production network services
is as low as 3%.

1. Introduction

Hundreds of new vulnerabilities are being discovered an-
nually. Dozens of new patches are being released monthly.
As attack tools become more user-friendly and automated,
more script kiddies can use them to randomly scan the In-
ternet for victims with unpatched vulnerabilities. To make
things worse, while a system administrator needs to patch

every possible hole in her systems, an attacker only needs
to locate one to break in.

Given the escalating threats of malicious cyber-attacks,
modern enterprises employ multiple lines of defense to pro-
tect themselves. First, content-aware intrusion prevention
systems (IPS), including firewalls, try to filter out network
packets containing attack payloads, including virus, worms,
and spyware/adware. Then, file system scanning tools fur-
ther eliminate those attack programs that somewhat evade
the IPS deployed at the enterprise’s network entry point.
Finally, vulnerability assessment tools determine if exist-
ing systems contain certain known vulnerabilities by send-
ing them a series of probe packets and checking if they fall
victim to these packets. Among these defenses, only vulner-
ability assessment allows the system administrator to proac-
tively find the security holes before any attacks try to exploit
them.

However, there is a well-known problem associated with
vulnerability assessment that prevents it from being used
as extensively as IPS/firewall or anti-malware file scanning
tools: safety. Although there are many commercial vul-
nerability scanning tools, none of them are truly safe. In
one study [1], all scanners studied caused adverse effects
on the network servers being tested. One scanner crashed
at least five servers during an assessment run. According
to Nessus documentation [2], every existing network-based
vulnerability scanner comes with the risk of crashing the
systems/services being tested, or even worse leaving per-
manent damaging side effects. In some sense, these results
are not surprising at all because vulnerability testing pack-
ets should behave like real attack packets in order to expose
the vulnerabilities. The only difference is that vulnerability
testing packets are not supposed to intentionally cause dam-
age to the tested network servers, even though they might do
so accidentally. There are several reasons why this acciden-
tal damage could happen in practice. First, some protocol
implementations do not handle errors very well, so any un-
expected inputs may crash them. Second, if a vulnerability
is related to memory errors, e.g., buffer overflow vulnera-
bility, a scanner would send enough data to overflow the
buffer, and the overflow could result in unpredictable pro-
gram execution, including a program crash, or some unde-

sirable modifications to the system state. As a result, vulner-
ability testing is done once per month or per quarter, even
though new vulnerabilities appear every day.

In this paper, we propose a vulnerability assessment sup-
port engine (Vase) that can ensure the safety of the vulner-
ability testing process. Unlike Nessus, Vase itself cannot
send out probe packets that can check if existing network
servers contain certain vulnerabilities. Instead, Vase is de-
signed to prepare the network servers that are going to be
tested by tools such as Nessus, such that the vulnerability
testing runs do not leave any permanent side effect on the
tested servers. Furthermore the tested targets are identical
to the network servers in every aspect.

Vase has two components: Feather-weight Virtual Ma-
chine (FVM) and network application duplicator. FVM is a
virtual machine technology that creates virtual machine at
the operating system layer. An FVM virtual machine is an
execution environment on the Microsoft Windows platform.
In the execution environment, applications have an illusion
of accessing the operating system exclusively. Thus to ap-
plications, each FVM virtual machine looks as real as the
native host machine. The network application duplicator is
a tool that can prepare an FVM virtual machine and dupli-
cate all network applications from host machine to FVM
virtual machine. Thus safe vulnerability assessment can be
automated.

Although existing virtual machine technologies such as
VMware [3] do provide full isolation, they are not appro-
priate for vulnerability testing because it takes too long to
clone a virtual machine from a physical machine, especially
for systems with hundreds of gigabytes of active disk space.
Moreover, any patching to or reconfiguration of the physical
machine requires a full copying to synchronize the physi-
cal and virtual machines. Finally, using a separate phys-
ical machine to host the cloned virtual machine entails a
fixed cost. Instead, Vase uses FVM to solve the problem
of quickly cloning a physical machine to a virtual machine,
and makes it possible to conduct vulnerability assessment
in an automatic and safe way.

FVM supports several features that make it a good fit for
safe vulnerability assessment. First, FVM allows applica-
tions to run natively on the host machine or in an FVM vir-
tual machine. This allows production-mode network appli-
cations to run on the host machine directly with minimum
performance penalties. Second, an FVM virtual machine
can be cloned from the host machine in seconds rather than
hours. Therefore, one can create an FVM virtual machine
from the host machine on the spot and use it as the target of
a vulnerability assessment run. This FVM virtual machine
will have the same patches, configurations, and OS environ-
ment as the host machine. So the testing fidelity is as high
as the test is run against the host machine directly. Third,
an FVM virtual machine is fully isolated from the host ma-
chine. Any modifications to an FVM virtual machine’s per-
sistent state, such as files or registries, are contained within
the virtual machine and guaranteed not to have any effects

on the applications running on the host machine.

FVM is based on resource renaming at the system call
interface. When an FVM virtual machine is started, by de-
fault its state is the same as that of the host machine. That’s
why creating an FVM virtual machine can be done instan-
taneously. When an FVM virtual machine updates its state,
the target resource is copied to its own workspace. This
keeps any updates within an FVM virtual machine from pol-
luting the host machine. For example, suppose an applica-
tion in one virtual machine (say VM1) tries to access a file
/a/b. If it is a read-only access, FVM allows it to access
/a/b directly. If it is write access, FVM will copy /a/b
to /vml/a/b, and transparently redirects subsequent file
accesses from /a/b to /vml/a/b. This way, updates in an
FVM virtual machine are isolated from the host machine.
To the best of our knowledge, FVM is the first virtual ma-
chine system in the Microsoft Windows platform that is
built on system call interface.

The rest of the paper is organized as follows: Section
2 surveys previous research related to vulnerability assess-
ment and virtual machine. Section 3 describes the technical
challenges of Vase and their solutions. Section 4 reports the
results of an evaluation of a fully working Vase prototype.
Section 5 concludes the paper with a summary of its major
contributions.

2. Related Work

Hardware abstraction layer virtualization. VMware
[3] and Microsoft Virtual PC [4] have the virtualization
interface at the hardware abstraction layer. They virtual-
ize common PC hardware like processor, memory and pe-
ripheral I/O devices such that multiple operating system in-
stances of different type can be installed on a single phys-
ical x86 CPU-based machine. The advantage of this ap-
proach is that common x86 operating systems can run on
virtual machines without modification. But the performance
of VMWare is less than 50% of the native host operating
system in benchmark tests as reported in [5].

Some light-weight virtual machines on the hardware ab-
straction layer [6, 5, 7] virtualize only a subset of the hard-
ware. Denali [6] is a virtual machine monitor (VMM)
specifically for server applications. It is designed to scale
the number of concurrent virtual machines by using para-
virtualization techniques. Para-virtualization means modi-
fying the virtual machine architecture to enhance scalabil-
ity, performance, and simplicity. Thus operating systems
need to be modified to fit for the new architecture. Denali
[6] demonstrates a simple operating system, llwaco and its
own simple web server. It is not clear if current server ap-
plications can be run on it without modification.

Xen [5] goes along the same line as Denali. It also
uses para-virtualization to improve performance. But Xen
is designed to support full multi-application operating sys-
tems and unmodified industry standard application binaries.
Linux is ported to Xen architecture and the performance is

close to native Linux. Microsoft Windows on the other hand
is more complex to be ported and there is no working sys-
tem or performance data yet.

The User-Mode Linux (UML) [7] ports the Linux ker-
nel to Linux itself. The UML kernel itself runs in the user
space of the host Linux. When an application in the UML is
started, the application process is created in both UML ker-
nel and host Linux kernel. The system calls made by UML
process are intercepted by ptrace mechanism and redirected
to UML kernel. Unfortunately, UML performance is also
50% less than host Linux.

All of the above virtualization techniques try to simulate
the hardware abstraction layer so as to create multiple in-
stances of virtual machines for the guest operating system.
From the point of view of safe vulnerability assessment, the
advantage of these techniques is that they can provide better
isolation because each virtual machine has its own operating
system. Ironically, the disadvantage of these technologies is
the side effect of their advantage: total independence. Be-
cause each virtual machine has its own operating system, it
needs to copy the whole file system of the production ma-
chine to create a duplicate. With the performance gain from
Xen, it seems that running production server applications in
Xen virtual machine is feasible. The remaining issues are
how to create duplicate quickly and support Microsoft Win-
dows. On the other hand, FVM resolves all the issues now
by virtualizing at operating system layer.

Operating system layer virtualization. The FreeBSD
based jail utility [8] creates multiple virtual file systems,
each having its own root and other system resources, using
resource renaming technique. Even privileged users of a jail
can only access resources within that jail. The chroot() sys-
tem call and a few modified macros in the kernel are what it
takes to perform the necessary name space separation.

The Linux VServer project [9] is a more advanced jail-
like implementation for Linux. The VServer project mod-
ifies the process management, file system, networking,
root capabilities and system V inter-process communica-
tion (IPC). On the host Linux, multiple vservers (virtual
machines) can be created and run their own server appli-
cations. Interestingly, it provides a unification feature. The
vservers can use hard links to duplicate the files on the host
Linux to save disk space and quickly create the vserver file
system. Towards the goal of safe vulnerability assessment,
Linux VServer can almost do everything that FVM can do
except two issues: Linux VServer doesn’t implement copy-
on-write and its technology is not applicable to Microsoft
Windows. Actually it turns out that the FVM for Windows
is much more complex. It involves more modules such as
service, registry, objects, IPC (DDE, clipboard, COM), etc
which are difficult to virtualize.

Similar to the Linux VServer project, Sphera [10],
SWsoft [11], etc provide product to support so called “Vir-
tual Dedicated Server” or “Virtual Private Server” feature.
They virtualize a physical machine as if there are multiple
stand-alone servers. Each virtual server can have its own

server software, root access and files. It seems that SWsoft
also support Microsoft Windows. Since few technical de-
tails are known, it is not clear if these products can be used
for safe vulnerability assessment.

Microsoft Windows Terminal Services [12] avoids the
resource conflict among multiple terminal sessions by name
space virtualization. The object manager in the Windows
executive uses a hierarchical naming convention for all the
system resources and every terminal session gets a separate
sub-tree in this hierarchy. All the resources associated with
a particular session are named using the session identifier as
its prefix. However, Windows terminal services stops short
of virtualizing files, registry hives and network modules.

The Alcatraz project [13] provides a virtual execution
environment for Linux applications through system call in-
terposition. It is designed specifically to sandbox untrusted
applications that may need to access privileged files. How-
ever, it does not support general virtualization that allows
multiple virtual machines to co-exist on a single physical
machine without interfering with one another. Nor does
it support virtualization of other types of system resources
than files.

Vulnerability assessment. There are dozens of vulner-
ability assessment tools [14, 15, 2, 16] in the market. As
in the report [1], all 11 tested tools cause some adverse re-
actions on network servers. Thus it is not surprising that
some tools keep safe vulnerability scanning in mind in its
design. For example, Foundstone’s FoundScan [14], Har-
ris’s STAT Scanner [15] and Nessus [2] provide users an
option of “safe scan”. But even the “safe scan” option may
not always work. For instance, Foundstone’s FoundScan
is reported in [1] causing outage with NetWare even with
“safe scan”. In the case study reported in [17], the author
is aware of the need of regular scan. But he is also aware
of the potential to cause issues with scanning. So finally
he chooses to scan the network only after midnight once a
week.

Tenable [18] reports some techniques to improve the
safety of vulnerability assessment. The first solution is to
only check the network server’s banner to get its version
number. Vulnerabilities are reported solely based on server
application’s version. The technique may cause false posi-
tives because some software may be patched without chang-
ing the version number. The second solution is passive
scanning. Vulnerability is checked by passively monitoring
network application’s traffic. The disadvantage of this tech-
nique is that it may report vulnerability only when attackers
attack the applications. This probably is too late. The third
technique is to log on a computer and audit its patch. But
getting credentials of important computer systems may be a
political battle that the security team needs to face.

3. Design and Implementation

The design goals of Vase are

Console processes and service processes ‘

|

Win32 API interception module

Network| Interprocess communication
address |DDE |Message | Clipboard | COM|

‘ Subsystem DLL(kernel32, user32, advapi32, ws2_32)

DLL
load

Win32

service

user mode

l kernel mode
System call interception module

Process/| Kernel object

thread

File

Registr]‘
‘Evcm ‘Mnlam‘Semaphore ‘Timer ‘Seclion‘LPC

NT executive (ntoskrnl.exe)

Window and graphics (win32k.sys)|

Figure 1. The architecture of FVM.

e High Testing Fidelity: The actual tested target should
be as close as possible to the real network applications
in every conceivable aspect.

o Full State Isolation: Vulnerability testing runs should
not leave any side effects on the tested network server
that could affect its subsequent operation.

e Automation: Vulnerability testing runs should be com-
pletely automated to the point that vulnerability scan-
ning can be done as frequently as scanning file systems
for malware.

3.1. System Overview

As stated before, Vase has two components: FVM and
network application duplicator. FVM is the underlying
technology for virtual machine which realizes the goals of
high testing fidelity and full state isolation. Network appli-
cation duplicator uses the FVM technology to realizes the
goal of automating the process of vulnerability testing.

When a new FVM virtual machine is created, it inher-
its the state of the host machine by default. Therefore,
when Vase duplicates a network application in an FVM vir-
tual machine, the duplicate can access everything accessible
to the original network application, including special reg-
istry entries and the configuration files. Therefore, Vase can
achieve high testing fidelity with FVM.

FVM uses a copy-on-write technique to ensure that ev-
ery file/registry update made by processes in an FVM vir-
tual machine result in a copy of the target file/registry in the
virtual machine’s work space. Consequently, Vase can also
achieve full isolation with FVM.

The network applications duplicator automates the pro-
cess of enumerating network applications in host machine,
starting a virtual machine, and starting network application
duplicates in the virtual machine.

The key idea in FVM is resource renaming, which is im-
plemented by intercepting system calls and rewriting their
resource arguments, as in Figure 1. FVM performs two
types of interception. To intercept at the system call in-
terface, FVM modifies the System Service Dispatch Ta-
ble (SSDT) to redirect a subset of system calls through

FVM’s virtualization logic, which is implemented as a
kernel driver. To intercept at the library call interface,
FVM uses a separate DLL (Dynamically Linked Library)
to intercept Win32 API calls. FVM uses the second in-
terception method for two reasons. First, some system
calls are undocumented, so we have to intercept them at
the library call level. Second, some Win32 API, such as
CreateService, is not just a simple wrapper around a
system call; rather it makes a series of system calls that
cannot be easily recognized by the kernel-level system call
interceptor.

FVM’s virtualization logic is divided into the following
modules:

Console process virtualization. Console process means
the process created by the user who uses the console. This
module intercepts process management calls to classify
console process to its corresponding virtual machine.

Service process virtualization. Services are to Windows
what daemons are to UNIX. A service is a background
process which is started by the Service Control Manager
(SCM). It runs independently of who, if anyone, is using the
console. This module traces the services installed in FVM
virtual machines and classifies the FVM service process to
its corresponding virtual machine.

File virtualization. This module implements a copy-on-
write policy to share host machine’s file state while contain-
ing virtual machine’s update to its own context. It handles
file and directory operations.

Registry virtualization. Windows registry is almost like
standard UNIX file system. The root of registry has five
keys. Each key is like a directory. In the key, subkeys can
be created like subdirectories. In the key, values can also
be created. Values are like files. The value name is like
file name and value data is like file content. This module
handles key/value operations.

Object virtualization. Windows objects here refer to the
base named kernel objects such as semaphores, mutexes and
events. These objects usually share the same global name
space and are mainly used for process/thread synchroniza-
tion and notification. Object virtualization localizes object
access and thus avoids the interference between the original
instance on the host machine and the duplicate instance on
the virtual machine.

Interprocess communication. In addition to synchroniza-
tion objects mentioned above, we will discuss more inter-
process communication (IPC) mechanisms to share data or
facilitate process synchronization.

Network virtualization. A network server application of-
ten listens on a well-known port with a wildcard IP address
(INADDR_ANY). This creates problems to start its dupli-
cate in FVM virtual machine because the duplicate will try
to bind to the same port too. This module renames the IP
address in bind call to its virtual machine IP address. Thus
the port can be reused and network applications feel that it
exclusively owns the network resource.

3.2. Console Process Virtualization

There are two types of processes that can run on an FVM
virtual machine: console process and service process. Re-
gardless of the process type, when a process issues a system
call to read or modify a system resource, FVM needs to an-
swer the question of which virtual machine should serve as
the context within which to interpret this system call. So
FVM needs to maintain a mapping between the process ID
and virtual machine ID.

This module handles the console process. When a vir-
tual machine is started, FVM automatically starts its initial
process, which is either a command shell or file browser,
and tags it with the virtual machine ID. All the descendant
processes of this initial process belong to the same virtual
machine and thus are tagged with its virtual machine ID too.

FVM maintains a list of processes running on a virtual
machine by registering a kernel callback routine that is no-
tified whenever a process is created. The callback routine
receives both the new process ID and its parent process ID.
If the parent process is in a virtual machine, the new pro-
cess is assigned to the same virtual machine. The callback
routine registration is achieved by calling kernel function
PsSetCreateProcessNotifyRoutine.

3.3. Service Process Virtualization

Service processes differ from console processes in that
their parent process is the Service Control Manager (SCM),
which runs on the host machine. Thus the parent process of
all service processes is the SCM process. The idea used in
console process virtualization is not applicable to this con-
text.

A user application normally installs a service by adding
a service name and its program image name into SCM’s
database. Later on, the SCM starts or stops the service pro-
cess upon an application’s request. Because SCM is respon-
sible for managing all the system and user services, it can-
not be duplicated on each virtual machine. To fully isolate
one virtual machine from others, FVM needs to ensure that
a service process is executed within the context of a virtual
machine where the service is installed. The idea is to build
another mapping between service and virtual machine at the
service installation time and convert it to process-VM map-
ping at the run time.

FVM employs a DLL hooking mechanism [19] to inter-
cept the CreateService call in the user level and passes
all the necessary information to the kernel driver, including
a service name and the name of the program image used for
the service process. As usual, the DLL hook modifies the
original service name by appending the virtual machine ID
to it before calling CreateService. The system call in-
terceptor extracts the program image name and the renamed
service name to create an internal mapping. Later on, when
SCM starts a service process using a program image name
that matches one of the stored image names, FVM binds this

service process to the virtual machine whose ID appears in
the associated renamed service name, and all subsequent
modifications made by this service process are automati-
cally ascribed to the matching virtual machine. In addition,
other service manipulation Win32 calls that take a service
name as argument, such as OpenService, are also in-
tercepted to ensure the consistency of SCM database and
service states.

3.4. File Virtualization

File virtualization isolates any file updates on a virtual
machine from the host machine by a copy-on-write ap-
proach. By default all the files are shared by virtual ma-
chines and the host machine. When processes on a virtual
machine intends to write a file, FVM makes a copy of the
file and all the subsequent access from the virtual machine
will be directed to this copy. The full path of the new copy
is constructed from the original file’s path and the virtual
machine ID.

FVM intercepts file-related system calls that take file
names as input arguments and renames the file names. Such
system calls include creating/opening files and reading file
attributes. According to the read/write access type and com-
plicated option flags, as well as the existence of the target
file on both the host machine and the virtual machine, FVM
decides whether the system calls should operate on the orig-
inal file or a local copy on the virtual machine, or simply
return an error status. FVM ensures that a file’s local copy
on a virtual machine has the same attributes and directory
structure as the original file on the host machine.

System calls to read/write files take a file handle as input
argument instead of a file name. Since the file handle is ob-
tained through creating/opening file system calls, it already
points to the right copy of the file and there is no need to
intercept these handle-oriented system calls. One exception
stays with deleting or renaming a file. In Win32 subsys-
tem, deleting or renaming a file involves opening the file
and setting special attributes on the returned file handle by
NtSetInformationFile system call. Because FVM
needs to keep track of the deleted and renamed files in a vir-
tual machine to accurately reflect its file image state, FVM
intercepts Nt Set InformationFile when this system
call is used to delete or rename a file. FVM recovers the
file name from the input file handle and adds it into a delete
name list of this virtual machine. The name list is written
into an on-disk log file periodically. In the file renaming
case, FVM also renames the new file name so that the new
file is only visible on the virtual machine.

3.5. Registry Virtualization

Windows registry is the repository where Windows con-
figurations are stored and must be virtualized to isolate any
configuration updates on a virtual machine from the host

machine. To reduce implementation complexity, FVM em-
beds a virtual machine’s registry entries in the host ma-
chine’s registry using Windows’ own registry subsystem.
More concretely, FVM intercepts all registry-related system
calls that use registry keys as arguments, and renames these
registry key arguments by prepending a prefix to the path
name of these keys. For each virtual machine, FVM creates
aregistry entry under the key \HKEY_CURRENT _USER. For
example, for the virtual machine VM1, FVM creates the key
\HKEY_CURRENT_USER\VM1 as its root, and all the reg-
istry entries in VM1 will be stored under this key. Whenever
any application from VM1 accesses a registry key, FVM
adds the prefix \HKEY_CURRENT_USER\VML1 to the path
name of the requested registry key.

FVM utilizes the same copy-on-write approach as file
virtualization to handle registry access in a virtual machine.
Depending on whether the access is opened for read or
write, FVM directs the intercepted registry-opening system
call to operate on either the original registry key, or a new
registry key copy under the virtual machine’s registry root.
If an application in a virtual machine creates a new registry
key, it is always created under the virtual machine’s registry
root.

3.6. Object Virtualization

Interprocess synchronization on Windows is mostly im-
plemented by kernel objects, such as event and timer. In
addition, Windows provides many Windows-specific inter-
process communication mechanisms for data sharing. We
will talk about the Windows interprocess communication is-
sues in the next subsection, and focus on the virtualization
of generic kernel objects in this subsection.

The Windows kernel objects, e.g., mutex, shared mem-
ory, event, etc., normally share the same global name space,
especially when these objects are created by a network ap-
plication, which has at most one instance running simulta-
neously. This implementation may cause problems when
doing vulnerability assessment on FVM that requires du-
plicated instances running on both the host machine and a
virtual machine. If one instance on the host machine is ac-
cessing a named kernel object, another instance of the same
application on a virtual machine may not be able to access
the same object correctly. FVM resolves this problem by
virtualizing kernel objects.

Kernel objects have a hierarchy similar to files and reg-
istries. There are many object directories in the system un-
der the root object directory. Each object directory con-
tains multiple kernel objects with similar types. Based on
the same renaming approach as registry virtualization, a lo-
cal object directory tree is created for each FVM virtual
machine whenever the virtual machine is started. When a
virtual machine is stopped, its local object directory is re-
moved and all the opened object handles under it are closed.
FVM intercepts the create/open system calls that access
base kernel objects, including mutant, semaphore, event,

section', timer, iocompletion, eventpair and symbolic link.
FVM redirects access to these objects to a virtual machine’s
local object directory and thus guarantee that the applica-
tion instances on the host machine and the virtual machine
do not access the same kernel object. Similarly, special file
object like named pipe and mailslot are also virtualized.

3.7. Interprocess Communication on VMs

For the isolation purpose, FVM requires that a process
running on one virtual machine not communicate with pro-
cesses running on the host machine or other virtual ma-
chines through interprocess communication (IPC), unless it
has to talk with a Windows system service on the host ma-
chine that cannot be virtualized, or it intends to use the IPC
to talk to another physical machine.

Common IPC mechanisms include shared memory,
named pipe, mailslot, LPC (Local Procedure Calls).
Through object virtualization, IPCs based on shared mem-
ory (section object), named pipe and mailslot are automat-
ically confined. Similarly, Windows LPC, which internally
uses port object for high-speed message passing, is also vir-
tualized.

There are still some Windows-specific IPC mechanisms
like DDE, COM, window message, clipboard, etc. These
IPC mechanisms are mainly used for interactive applica-
tions. For example, COM (Component Object Model) ap-
plications may query the Running Object Table (ROT) to de-
termine whether there is already an instance running. DDE
(Dynamic Data Exchange) allow new instance to communi-
cate with existing instances by broadcasting Window mes-
sages to desktop windows. Although network applications
normally are not involved with these mechanisms, we are
still interested in confining them so we can provide a better
isolation environment for all the Windows applications in
future.

3.8. Network Virtualization

A network application starts by creating a socket and
making a bind call to specify the local IP address and local
port number for the socket. In supporting vulnerability test-
ing, Vase creates a duplicate of the target network applica-
tion to be tested in an FVM virtual machine. The duplicate
will bind to the same IP address and port number. Without
network interface virtualization, this is not possible because
the operating system simply does not allow two processes
to bind themselves to the same IP address and port number
pair.

FVM virtualizes an network interface by assigning each
FVM virtual machine a distinct IP address. FVM first uses
the IP aliasing mechanism to assign multiple IP addresses
to the network interface. When FVM starts a virtual ma-
chine, it adds the virtual machine’s IP address to the host

IRefer to shared memory, also called file mapping object in Win32
subsystem

machine’s physical interface as an IP alias. When a vir-
tual machine is stopped, its IP address is removed from the
physical interface accordingly.

When a network application running in an FVM virtual
machine makes a bind call, FVM intercepts it and changes
the local IP address in the call to the virtual machine’s IP
address transparently. That is, the network application actu-
ally binds to its virtual machine’s IP address. Consequently,
processes in one virtual machine can neither receive traffic
destined to other virtual machines nor spoof another ma-
chine’s IP address when sending traffic. Even if a target
application hard-codes its bind IP address in a configura-
tion file, FVM still can bind the application’s duplicate to
the IP address of its virtual machine.

3.9. Network Application Duplicator

To automate a vulnerability test run, Vase needs to be
able to create a virtual machine from a physical machine,
and start all network applications currently running on that
physical machine in the new virtual machine in exactly the
same way as they were started originally.

There are two types of network applications on the Mi-
crosoft Windows. The first type is console applications such
as eDonkey. This type of applications can be started as nor-
mal command line programs. The second type is Windows
service. Most server applications such as Apache and IIS
(Internet Information Service) fall into this category. Dif-
ferent from console applications, service applications can-
not be started from the command line. They need to be in-
stalled through the SCM (Service Control Manager), which
is the one that actually starts service applications.

There are four phases in the duplicator. In the first phase,
the duplicator enumerates all the network applications run-
ning on a target network server. The duplicator uses a tool
called fport from Foundstone [14] to find out all pro-
cesses that are listening on a network port, including the
absolute pathname of the executable file name behind each
of these processes. However, fport cannot tell whether
a process is from a console application or from a service
application. The duplicator queries SCM’s database using
EnumServicesStatus and QueryServiceConfig
to identify the pathname of each service’s executable file.
If an executable returned by fport is found in SCM’s
database, it is treated as a service application; otherwise it
is a console application. After this enumeration phase, the
duplicator obtains a complete list of network applications
that are currently running on the host machine and how to
start them.

In the second phase, the duplicator first creates a new
FVM virtual machine through a new function StartvM
from FVM. Then the duplicator sets itself as the first pro-
cess in the new created FVM virtual machine. Finally it
installs and starts all the network applications identified in
the first phase. Because the duplicator process runs in the
new virtual machine, the applications it starts will also run

in the same virtual machine.

In the third phase, the duplicator invokes a vulnerabil-
ity assessment tool such as Nessus against the FVM virtual
machine which runs all the duplicated network applications.
These vulnerability assessment tools produce a report as the
end result.

The final phase is cleanup. After a vulnerability scan run
is completed, the duplicator will clean up the FVM virtual
machine by stopping the console applications, stopping and
uninstalling service applications, and finally terminating the
FVM virtual machine.

3.10. Implementation Lessons

Although the idea of virtualization through resource re-
naming is conceptually simple, it is surprisingly difficult to
implement on the Windows platform. First of all, there are
so many name spaces in the Windows operating system. As
summarized in Table 1, different Windows subsystems use
different name spaces and involve many functions. There
is no systematic way to enumerate all of them. Whenever
some name spaces are not handled properly, the degree of
isolation that FVM provides suffers. Secondly, even for a
given name space, it is not always possible to apply resource
renaming in a consistent way. For example, most kernel ob-
jects should be renamed but some of them should be left
alone because some system services cannot be duplicated.

4. Evaluation

We implemented a Vase prototype and evaluated it from
the following angles: performance overhead, fidelity, iso-
lation and start-up delay. Three computers are used in the
following experiments, all with the same hardware config-
uration: an AMD Athlon XP 2000+ CPU with 512 MBytes
memory and a 7200 RPM hard disk. The first computer
is used as a server. It runs Microsoft Windows 2000 with
service pack 4, Internet Information Service (IIS) 5.0, Mi-
crosoft SQL server 2000, MySQL server 4.1, and Apache
web server 2.0.54. The second computer runs Redhat Linux
9.0 and Nessus 2.2.4, and serves as a vulnerability assess-
ment scanner machine. The third computer is only used for
performance test. It runs Redhat Linux 9.0, Apache bench-
mark, which is used to benchmark Apache web server, and
Super Smack 1.3 [20], which is used to benchmark MySQL.

4.1. Performance Overhead

Because Vase runs a duplicate copy of the target
production-mode network application in an FVM virtual
machine but on the same physical machine, there may be
some performance impacts on the original network applica-
tion. This experiment intends to quantify this performance
cost. We test each target network application in four scenar-
ios:

Table 1. Functions intercepted for virtualization. Functions with name Nt* are intercepted in kernel.

All others are intercepted in user level.

Modules | Functions

Console | NtResumeThread

process

Service CreateService, OpenService, StartServiceCtrlDispatcher, RegisterServiceCtrlHandler(Ex), NtResumeThread

process

File NtCreateFile, NtOpenFile, NtQueryAttributesFile, NtQueryFullAttributesFile, NtQueryDirectoryFile, Nt-
QueryInformationFile, NtSetInformationFile, NtDeleteFile, NtClose

Registry | NtCreateKey, NtOpenKey, NtQueryKey, NtDeleteKey

Object NtCreateMutant, NtOpenMutant, NtCreateSemaphore, NtOpenSemaphore, NtCreateEvent, NtOpenEvent,
NtCreateTimer, NtOpenTimer, NtCreateloCompletion, NtOpenloCompletion, NtCreateEventPair, NtOpen-
EventPair, NtCreateSection, NtOpenSection, NtCreatePort, NtCreateWaitablePort, NtConnectPort, NtSe-
cureConnectPort

IPC SendMessage, SendMessageTimeout, SendNotifyMessage, SendMessageCallback, PostMessage, Post-
ThreadMessage, DdeCreateStringHandle, GlobalAddAtom, NtCreateNamedPipeFile, NtCreateMailslotFile,
NtCreateFile, NtOpenFile

Network | bind

1. We measure the performance of the network applica-
tion being tested when it runs directly on the host ma-
chine. There is no FVM interception overhead.

2. We measure the performance of the network applica-
tion when it runs directly on the host machine and a
duplicate of itself runs in an FVM virtual machine on
the same physical machine. This tests the performance
impact of FVM’s system call interception on the target
network application.

3. We measure the performance of the network applica-
tion when it runs directly on the host machine, and a
duplicate of itself runs in an FVM virtual machine on
the same physical machine and is being tested by Nes-
sus. This measures the additional performance cost to
the target network application due to the interactions
between the duplicate and Nessus.

4. We measure the performance of the duplicate running
in an FVM virtual machine. This produces the perfor-
mance overhead introduced by FVM.

Three applications are used: Apache web server,
MySQL and WinRAR. We use Apache bench to bench-
mark Apache web server. Apache bench uses 5 concur-
rent connections and sends 5000 requests for the index.html
in the document root directory. The performance metric is
the number of requests served per second. We used Su-
per Smack to benchmark MySQL. We cannot test Microsoft
SQL Server because no free tools are available and the li-
cense agreement of Microsoft SQL Server prohibits disclos-
ing benchmark results to third parties. Super Smack uses 10

concurrent connections and 10000 requests for select oper-
ation (the select—-key.smack scripts) and update op-
eration (the update-select.smack scripts). The per-
formance metric is the number of select or update opera-
tions served per second. Finally we tested WinRAR 3.42 to
evaluate the performance impact of FVM on non-network
applications. The performance metric for WinRAR is the
time (seconds) required to extract a software package, in
this case the Apache web server 2.0.54 package. Each re-
ported performance number is an average of ten runs.

Figure 2 shows the normalized performance of each test
application under Scenario (2), (3), and (4), with respect to
that under Scenario (1). That is, 95% means that the ap-
plication’s performance is 95% of that when it runs alone
on the host machine directly. The result shows that just
running a duplicate in an FVM machine or even perform-
ing a vulnerability testing against such a duplicate has lit-
tle effects on the performance of the production-mode net-
work application. The performance degradation is less than
3%. This means that Vase’s approach of “duplicate and
test” actually allows a target application to continue its ser-
vice while it is being tested. As for FVM’s virtualization
overhead, it is negligible for MySQL, and is about 9% for
Apache and WinRAR. From a thorough examination of the
detailed system call traces, we found that both Apache and
WinRAR invoke a large number of file and directory oper-
ations. Because of the copy-on-write policy, FVM always
checks the virtual machine’s files/directories before access-
ing the host machine’s. The overhead of these additional
checks becomes significant for applications that require in-
tensive file/directory operations.

N
(=}

Performance Percentage
wn
S

)
=

20

MySQL-update Apache

MySQL-select

EEEE Production application with dup running

E==5 Production application with dup being scanned
Dup in FVM virtual machine

WinRAR

Figure 2. The performance impact of virtual-
ization and vulnerability assessment.

Table 2. The vulnerabilities found by Nessus
during the fidelity test. Applications that do
not have vulnerabilities are not listed.

Applications | Security Holes
IIS FTP 1
IIS SMTP
IIS Web
Apache Web
Telnet
KaZaA

4.2. Fidelity

Security Warnings

1
0
8
1
1
0

e = =R

To demonstrate that scanning a duplicate of a target ap-
plication running in an FVM virtual machine is as real as
scanning the application running on the host machine di-
rectly, we tested Windows’s telnet service, Microsoft SQL
server, IIS SMTP service, IIS FTP service, IIS Web service,
MySQL, Apache Web server, eDonkey 2000 and KaZaA.
We run all the network applications on the server machine
and then apply Nessus to each of them to produce a vulner-
ability report. The test result is in Table 2. Among the test
applications, IIS Web service appears to be the most vulner-
able. There are totally 7 security holes found and 4 of them
are in IIS Web service. Among the 11 security warnings,
IIS Web service accounts for 8 of them.

Then we run all the applications in an FVM virtual ma-
chine and apply Nessus to them in the same way. The vul-
nerability reports produced are the same as is shown in Ta-
ble 2. This experiments provides an initial evidence that as
far as assessing the vulnerability of a network application is
concerned, running the application in an FVM virtual ma-

chine is as good as running it on a physical machine.
4.3. Isolation

To demonstrate that Vase indeed isolates the side effects
produced by vulnerability assessment from the host ma-
chine, we record the file system and registry state before
a vulnerability test, and compare it with the file system and
registry state after the test. First we create a disk image of
the whole file system of the target server. Then we start
vulnerability assessment runs against network applications
running in an FVM virtual machine on the target server. Af-
ter the test is completed, we create a second disk image
of the target server. Finally, we use Beyond Compare,
which is a Windows tool that can recursively compare all
the subdirectories and files under the root directory, to com-
pare the two disk images.

The comparison report shows that all modifications
to the file system are indeed contained within the home
directory of the FVM virtual machine. Suppose the FVM
virtual machine has a home directory of C: \fvm0. Then
the only file system modifications due to the tests occur
under C: \ £vm0. For example, IIS Web server’s log file is
changed during vulnerability assessment, and it is stored in
C:\fvmO\C\WINNT\system32\LogFiles\W3SVC1.
The corresponding file in the host machine
C:\WINNT\system32\LogFiles\W3sSvC1l is
not affected.

By taking a closer look at the FVM virtual machine’s
home directory, we found vulnerability testing runs indeed
leave many side effects to the file system. Without FVM,
these side effects would have affected the host machine. For
example, IIS and Apache Web server changes their access
logs, which record all the HTTP requests from Nessus; IIS
FTP server logs records all of Nessus’s file accesses, includ-
ing “make directory” and file transfer operations; Microsoft
SQL server and MySQL changes their database access log;
eDonkey generates some .met files.

To detect changes to the registry state, we export the reg-
istry using the program regedit . exe before and after a
vulnerability testing run, and then use UltraEdit to com-
pare the two exported registry files. We found that Nessus
does not seem to result in registry state changes. Among
the test applications, the registry state changes only in the
case of KaZaA. However, we believe this change is due to
KaZaA itself rather than due to Nessus, because the key
name is kazaaNet and Seed. In any case, Vase is able to
successfully confine this registry change to the FVM virtual
machine in which KaZaA runs.

4.4. Start-up Delay

One of the major goals of Vase is to automate the vul-
nerability testing process so that one can run vulnerability
testing as frequently as virus scanning. In this subsection,
we evaluate the time Vase takes to prepare a network server

for vulnerability testing. We measured the time required to
clone an FVM virtual machine from the server machine and
duplicate all the network applications currently running on
the server machine to the new virtual machine. It takes 43
seconds for the server machine on which 9 network applica-
tions (the same applications as in fidelity test) are currently
running. The time for creating an FVM virtual machine and
starting most network applications is very small. Most of
this 43 seconds is spent on starting Microsoft SQL Server
and MySQL, because the amounts of data they need to copy
from the host machine to the virtual machine are 40 MBytes
and 30 MBytes, respectively. As a result, these two appli-
cations take 19 seconds and 13 seconds, respectively.

As a comparison, we also measured the time required to
physically clone our server machine. We use Norton Ghost
2003 to make a copy of the server machine’s system disk.
The system disk installs all the software used in this paper
and is around 3.2 GBytes in size. It takes Norton Ghost 13
minutes to finish this copying. The average disk copy speed
is only 4 MBytes per second because Norton Ghost clones
a disk by copying files one by one, which incurs significant
overhead for small files.

5. Conclusion

Safety of vulnerability assessment is a well-known prob-
lem to which there is no adequate solution until now. Al-
though some vulnerability scanning tools such as Nessus
and Foundstone attempted to mitigate this problem, as de-
scribed in Section 2, none of them completely solve it. Even
when the “safe scan” option is turned on, some vulnerability
testing tools [1] still crash the servers being tested.

This paper describes the design, implementation and
evaluation of the first known vulnerability assessment sup-
port system called Vase, which can automate the vulnera-
bility testing process while guaranteeing its safety. Vase is
built on the feather-weight virtual machine (FVM) technol-
ogy, which provides the same isolation property as heavy-
weight virtual machine technologies such as VMware but
incurs a much smaller start-up overhead and resource re-
quirement. The current FVM prototype runs on the Mi-
crosoft Windows and can successfully virtualize system re-
sources such as file, registry, object, network interface, ser-
vice, and inter-process communication.

Vase can automatically clone a physical machine to an
FVM virtual machine, including the set of network services
currently running on the physical machine, and redirect vul-
nerability testing packets toward the cloned virtual machine.
Experiments on the Vase prototype show that the vulnerabil-
ity testing using Nessus produces identical results when it is
run against the physical machine and against the cloned vir-
tual machine (fidelity), that none of the vulnerability test-
ing runs create any side effects in the host machine (iso-
lation), and that the performance cost of vulnerability test-
ing to the production-mode network applications is minimal
(transparency).

References

(1]

(2]

(3]

4

—_

[5

—

(6]

(7]

(8]

[9]

(10]

(11]

[12]

[13]

[14]
[15]
[16]

[17]

(18]

[19]

(20]

K. Novak, “VA Scanners Pinpoint Your Weak Spots,”
Network Computing, 2003. http://www.nwc.com/1412/
1412£2.html

Nessus, “Configuring Nessus to perform local security
checks on Unix hosts.” http://nessus.org/documentation/
index.php?doc=ssh

VMware, “VMware Workstation.” http://www.vmware.
com/products/desktop/ws_features.html

Microsoft, “Microsoft Virtual PC 2004.” http://www.
microsoft.com/windows/virtualpc/default.mspx

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, 1. Pratt, and A. Warfield, “Xen and
the art of virtualization,” in Proceedings of the nineteenth

ACM symposium on Operating systems principles. ACM
Press, 2003, pp. 164-177.
A. Whitaker, M. Shaw, and S. D. Gribble, “Denali:

Lightweight Virtual Machines for Distributed and Net-
worked Applications,” Technical Report 02-02-01, 2002.

J. Dike, “A user-mode port of the Linux kernel,” in Pro-
ceedings of the 4th Annual Linux Showcase and Conference,
2000.

P. Kamp and R. Watson, “Jails: Confining the Omnipotent
Root,” in Proceedings of the 2nd International SANE Con-
ference, 2000.

Linux VServer Project. http:/linux-vserver.org/

Sphera, “Shared Hosting.” http://www.sphera.com/
business-solutions-shared-hosting.php
SWsoft, “What is Virtual Private Server?”
sw-soft.com/en/virtuozzo/hsp/

Microsoft, “Technical Overview of Terminal Ser-
vices.” http://download.microsoft.com/download/
2/8/1/281f4d94-ee89-4b21-919e-9a%ccef44a743/
TerminalServerOverview.doc

Z. Liang, V. Venkatakrishnan, and R. Sekar, “Isolated Pro-
gram Execution: An Application Transparent Approach
for Executing Untrusted Programs,” in Proceedings of An-
nual Computer Security Applications Conference, Decem-
ber 2003.

Foundstone, “FoundScan Engine.” http://www.foundstone.
com/

Harris, “STAT Scanner” http://www.stat.harris.com/
solutions/vuln_assess/scanner_index.asp

eEye Digital Security, “Retina Network Security Scanner.”
http://www.eeye.com/

K. Austin, “Implementing Vulnerability Assessment with
eEyes EVA Suite — Case Study,” 2004. http://www.giac.org/
practical/GSEC/Kevin_Austin_GSEC.pdf

R. Deraison and R. Gula, “Blended Security Assess-
ments,” 2004. http://www.tenablesecurity.com/images/pdfs/
blended_security checks.pdf

I. Ivanov, “API Hooking Revealed,” 2002. http://www.
codeproject.com/system/hooksys.asp
T. Bourke, “Super smack.”
supersmack/

http://www.

http://vegan.net/tony/

