
We Need Assurance!

Brian Snow
U. S. National Security Agency

bdsnow@nsa.gov

Abstract

When will we be secure? Nobody knows for sure –

but it cannot happen before commercial security
products and services possess not only enough
functionality to satisfy customers’ stated needs, but
also sufficient assurance of quality, reliability, safety,
and appropriateness for use. Such assurances are
lacking in most of today’s commercial security
products and services. I discuss paths to better
assurance in Operating Systems, Applications, and
Hardware through better development environments,
requirements definition, systems engineering, quality
certification, and legal/regulatory constraints. I also
give some examples.

1. Introduction

This is an expanded version of the “Distinguished
Practitioner” address at ACSAC 2005 and therefore is
less formal than most of the papers in the proceedings.

I am very grateful that ACSAC chose me as a
distinguished practitioner, and I am eager to talk with
you about what makes products and services secure.

Most of your previous distinguished practitioners
have been from the open community; I am from a
closed community, the U.S. National Security Agency,
but I work with and admire many of the distinguished
practitioners from prior conferences.

I spent my first 20 years in NSA doing research
developing cryptographic components and secure
systems. Cryptographic systems serving the U.S.
government and military spanning a range from
nuclear command and control to tactical radios for the
battlefield to network security devices use my
algorithms.

For the last 14 years, I have been a Technical
Director at NSA (similar to a chief scientist or senior
technical fellow in industry) serving as Technical
Director for three of NSA’s major mission
components: the Research Directorate, the Information
Assurance Directorate, and currently the Directorate

for Education and Training (NSA’s Corporate
University). Throughout these years, my mantra has
been, “Managers are responsible for doing things
right; Technical Directors are responsible for finding
the right things to do.”

There are many things to which NSA pays
attention in developing secure products for our
National Security Customers to which developers of
commercial security offerings also need to pay
attention, and that is what I want to discuss with you
today.

2. Setting the context

The RSA Conference of 1999 opened with a choir
singing a song whose message is still valid today:
“Still Haven’t Found What I’m Looking For”. The
reprise phrase was . . . “When will I be secure?
Nobody knows for sure. But I still haven’t found what
I’m looking for!”

That sense of general malaise still lingers in the
security industry; why is that? Security products and
services should stop malice in the environment from
damaging their users. Nevertheless, too often they fail
in this task. I think it is for two major reasons.

First, too many of these products are still designed
and developed using methodologies assuming random
failure as the model of the deployment environment
rather than assuming malice. There is a world of
difference!

Second, users often fail to characterize the nature
of the threat they need to counter. Are they subject
only to a generic threat of an opponent seeking some
weak system to beat on, not necessarily theirs, or are
they subject to a targeted attack, where the opponent
wants something specific of theirs and is willing to
focus his resources on getting it?

 The following two simple examples might
clarify this.

Example 1: As a generic threat, consider a burglar
roaming the neighborhood wanting to steal a VCR.
First, understand his algorithm: Find empty house

(dark, no lights) try door; if open, enter, if VCR – take.
If the door is resistant, or no VCR is present, find
another dark house.

Will the burglar succeed? Yes, he will probably
get a VCR in the neighborhood. Will he get yours?
What does it take to stop him? Leave your lights on
when you go out (9 cents a kilowatt-hour) and lock
your door. That is probably good enough to stop the
typical generic burglar.

Example 2: As a targeted threat, assume you have
a painting by Picasso worth $250,000 hanging above
your fireplace, and an Art thief knows you have it and
he wants it. What is his algorithm? He watches your
house until he sees the whole family leave. He does
not care if the lights are on or not. He approaches the
house and tries the door; if open, he enters. If locked,
he kicks it in. If the door resists, he goes to a window.
If no electronic tape, he breaks the glass and enters. If
electronic tape is present, he goes to the siding on the
house, rips some off, then tears out the fiberboard
backing, removes the fiberglass insulation, breaks
though the interior gypsum board, steps between the
studs, and finally takes the painting and leaves.

It takes more effort to counter a targeted threat.
In this case, typically a burglar alarm system with
active polling and interior motion sensors as a
minimum (brick construction would not hurt either).
With luck, this should be enough to deter him. If not,
at least there should be increased odds of recovery due
to hot pursuit once the alarms go off.

There is no such thing as perfect security; you
need to know how much is enough to counter the
threat you face, and this changes over time.

3. What do we need?

NSA has a proud tradition during the past 53
years of providing cryptographic hardware, embedded
systems, and other security products to our customers.
Up to a few years ago, we were a sole-source provider.
In recent years, there has come to be a commercial
security industry that is attractive to our customers,
and we are in an unaccustomed position of having to
“compete.” There is nothing wrong with that. If
industry can meet our customer’s needs, so be it.

Policy and regulation still require many of our
customers to accept Government advice on security
products. However, they really press us to recommend
commercial solutions for cost savings and other
reasons. Where we can, we do so. However, we do not
do it very often because we still have not found what
we are looking for – assurance.

Assurance is essential to security products, but it
is missing in most commercial offerings today. The

major shortfall is absence of assurance (or safety)
mechanisms in software. If my car crashed as often as
my computer does, I would be dead by now.

In fact, compare the software industry to the
automobile industry at two points in its history, the
1930s and today. In 1930, the auto industry produced
cars that could go 60 mph or faster, looked nice, and
would get you from here to there. Cars “performed”
well, but did not have many “safety features.” If you
were in an accident at high-speed, you would likely
die.

 The car industry today provides air bags, seat
belts, crush zones, traction control, anti-skid braking,
and a host of other safety details (many required by
legislation) largely invisible to the purchaser. Do you
regularly use your seat belt? If so, you realize that
users can be trained to want and to use assurance
technology!

The software security industry today is at about
the same stage as the auto industry was in 1930; it
provides performance, but offers little safety. For both
cars and software, the issue is really assurance.

Yet what we need in security products for high-
grade systems in DoD is more akin to a military tank
than to a modern car! Because the environment in
which our products must survive and function
(battlefields, etc.) has malice galore.

I am looking forward to, and need, convergence
of government and commercial security products in
two areas: assurance, and common standards.
Common standards will come naturally, but assurance
will be harder – so I am here today as an evangelist for
assurance techniques.

Many vendors tell me that users are not willing to
pay for assurance in commercial security products; I
would remind you that Toyota and Honda penetrated
U.S. Markets in the 70’s by differentiating themselves
from other brands by improving reliability and quality!
What software vendor today will become the “Toyota”
of this industry by selling robust software?

4. Assurance: first definition

What do I mean by assurance? I’ll give a more
precise definition later, but for now it suffices to say
that assurance work makes a user (or accreditor) more
confident that the system works as intended, without
flaws or surprises, even in the presence of malice.

We analyze the system at design time for potential
problems that we then correct. We test prototype
devices to see how well they perform under stress or
when used in ways beyond the normal specification.
Security acceptance testing not only exercises the
product for its expected behavior given the expected

environment and input sequences, but also tests the
product with swings in the environment outside the
specified bounds and with improper inputs that do not
match the interface specification. We also test with
proper inputs, but in an improper sequence. We
anticipate malicious behavior and design to counter it,
and then test the countermeasures for effectiveness.
We expect the product to behave safely, even if not
properly, under any of these stresses. If it does not,
we redesign it.

I want functions and assurances in a security
device. We do not “beta-test” on the customer; if my
product fails, someone might die.

Functions are typically visible to the user and
commanded through an interface. Assurances tend to
be invisible to the user but keep him safe anyway.

Examples would be thicker insulation on a power
wire to reduce the risk of shock, and failure analysis to
show that no single transistor failure will result in a
security compromise.

Having seat belts in a car provides a safety
function. Having them made of nylon instead of
cotton is the result of assurance studies that show
nylon lasts longer and retains its strength better in the
harsh environment of a car’s interior.

Assurance is best addressed during the initial
design and engineering of security systems – not as
after-market patches. The earlier you include a
security architect or maven in your design process, the
greater is the likelihood of a successful and robust
design. The usual quip is, “He who gets to the
interface first, wins”.

When asked to predict the state of “security ten
years from now,” I focus on the likely absence of
assurance, rather than the existence of new and
wonderful things.

Ten years from now, there will still be security-
enhanced software applications vulnerable to buffer
overflow problems. These products will not be secure,
but will be sold as such.

Ten years from now, there will still be security-
enhanced operating systems that will crash when
applications misbehave. They will not be secure either.

Ten years from now, we will have sufficient
functionality, plenty of performance, but not enough
assurance.

Otherwise, predicting ten years out is simply too
hard in this industry, so I will limit myself to about
five years. Throughout the coming five-year span, I
see little improvement in assurance, hence little true
security offered by the industry.

5. The current state of play

Am I depressed about this state of affairs? Yes, I
am. The scene I see is products and services
sufficiently robust to counter many (but not all) of the
“hacker” attacks we hear so much about today, but not
adequate against the more serious but real attacks
mounted by economic enemies, organized crime,
nation states, and yes, terrorists.

We will be in a truly dangerous stance: we will
think we are secure (and act accordingly) when in fact
we are not secure.

The serious enemy knows how to hide his
activities. What is the difference between a hacker
and a more serious threat such as organized crime?
The hacker wants a score, and bragging rights for
what he has obviously defaced or entered. Organized
crime wants a source, is willing to work long, hard,
and quietly to get in, and once in, wants to stay
invisible and continue over time to extract what it
needs from your system.

Clearly, we need confidence in security products;
I hope we do not need a major bank-failure or other
disaster as a wake-up call before we act.

The low-level hackers and “script-kiddies” who
are breaking systems today and are either bragging
about it or are dumb enough to be caught, are
providing some of the best advertising we could ask
for to justify the need for assurance in security
products.

They demonstrate that assurance techniques
(barely) adequate for a benign environment simply
will not hold up in a malicious environment, so we
must design to defeat malice. Believe me – there is
malice out there, beyond what the “script-kiddies” can
mount.

However, I do fear for the day when the easy
threats are countered – that we may then stop at that
level, rather than press on to counter the serious and
pernicious threats that can stay hidden.

During the next several years, we need major
pushes and advances in three areas: Scalability,
Interoperability, and Assurance. I believe that market
pressures will provide the first two, but not the last one
– assurance.

There may or may not be major breakthroughs in
new security functions; but we really do not need
many new functions or primitives – if they come, that
is nice. If they do not, we can make do with what we
have.

What we really need but are not likely to get is
greater levels of assurance. That is sad, because
despite the real need for additional research in
assurance technology, the real crime is that we fail to

use fully that which we already have in hand! We need
to better use those confidence-improving techniques
that we do have, and continue research and
development efforts to refine them and find others.

I am not asking for the development of new
science; the safety and reliability communities (and
others) know how to do this – go and learn from them.

You are developers and marketers of security
products, and I am sorry that even as your friend I
must say, “Shame on you. You should build them
better!” It is a core quality-of-implementation issue.
The fact that teen-age hackers can penetrate many of
your devices from home is an abysmal statement about
the security-robustness of the products.

6. Assurance: second definition

It is time for a more precise definition.
Assurances are confidence-building activities
demonstrating that

1. The system’s security policy is internally
consistent and reflects the requirements of the
organization,

2. There are sufficient security functions to
support the security policy,

3. The system functions meet a desired set of
properties and only those properties,

4. The functions are implemented correctly, and
5. The assurances hold up through the

manufacturing, delivery, and life cycle of the
system.

We provide assurance through structured design
processes, documentation, and testing, with greater
assurance provided by more processes, documentation,
and testing.

I grant that this leads to increased cost and
delayed time-to-market – a severe one-two punch in
today’s marketplace; but your customers are growing
resistive and are beginning to expect, and to demand,
better products tomorrow. They are near the point of
chanting, “I’m mad as hell, and I’m not going to take
it anymore!”

Several examples of assurance techniques come to
mind; I will briefly discuss some in each of the
following six areas: operating systems, software
modules, hardware features, systems engineering,
third party testing, and legal constraints.

7. Operating systems

Even if operating systems are not truly secure,

they can at least remain benign (not actively
malicious) if they would simply enforce a digital
signature check on every critical module prior to each

execution. Years ago, NSA’s research organization
wrote test code for a UNIX system that did exactly
that. The performance degraded about three percent.
This is something that is doable!

Operating Systems should be self-protective and
enforce (at a minimum) separation, least-privilege,
process-isolation, and type-enforcement.

They should be aware of and enforce security
policies! Policies drive requirements. Recall that
Robert Morris, a prior chief scientist for the National
Computer Security Center, once said: “Systems built
without requirements cannot fail; they merely offer
surprises – usually unpleasant!”

Given today’s common hardware and software
architectural paradigms, operating systems security is
a major primitive for secure systems – you will not
succeed without it. This area is so important that it
needs all the emphasis it can get. It is the current
“black hole” of security.

The problem is innately difficult because from the
beginning (ENIAC, 1944), due to the high cost of
components, computers were built to share resources
(memory, processors, buses, etc.). If you look for a
one-word synopsis of computer design philosophy, it
was and is SHARING. In the security realm, the one
word synopsis is SEPARATION: keeping the bad
guys away from the good guys’ stuff!

So today, making a computer secure requires
imposing a “separation paradigm” on top of an
architecture built to share. That is tough! Even when
partially successful, the residual problem is going to
be covert channels. We really need to focus on
making a secure computer, not on making a computer
secure – the point of view changes your beginning
assumptions and requirements!

8. Software modules

Software modules should be well documented,
written in certified development environments, (ISO
9000, SEI-CMM level five, Watts Humphrey’s Team
Software Process and Personal Software Process
(TSP/PSP), etc.), and fully stress-tested at their
interfaces for boundary-condition behavior, invalid
inputs, and proper commands in improper sequences.

In addition to the usual quality control concerns,
bounds checking and input scrubbing require special
attention. For bounds checking, verify that inputs are
of the expected type: if numeric, in the expected
range; if character strings, the length does not exceed
the internal buffer size. For input scrubbing,
implement reasonableness tests: if an input should be a
single word of text, a character string containing
multiple words is wrong, even if it fits in the buffer.

A strong quality control regime with aggressive
bounds checking and input scrubbing will knock out
the vast majority of today’s security flaws.

We also need good configuration control
processes and design modularity.

A good security design process requires review
teams as well as design teams, and no designer should
serve on the review team. They cannot be critical
enough of their own work. Also in this world of
multi-national firms with employees from around the
world, it may make sense to take the national affinity
of employees into account, and not populate design
and review teams for a given product with employees
of the SAME nationality or affinity. Half in jest I
would say that if you have Israelis on the design team
put Palestinians on the review team; or if Germans are
on one, put French on the other. . . .

Use formal methods or other techniques to assure
modules meet their specifications exactly, with no
extraneous or unexpected behaviors – especially
embedded malicious behavior.

Formal methods have improved dramatically over
the years, and have demonstrated their ability to
reduce errors, save time, and even save dollars! This
is an under-exploited and very promising area
deserving more attention.

I cite two examples of formal methods successes:
The Microsoft SLAM static driver verifier effort
coming on line in 2005, and Catherine Meadows’
NRL Protocol Analyzer detecting flaws in the IKE
(Internet Key Exchange) protocol in 1999. You may
have your own recent favorites.

As our systems become more and more complex,
the need for, and value of, formal methods will
become more and more apparent.

9. Hardware features

Consider the use of smartcards, smart badges, or

other hardware tokens for especially critical functions.
Although more costly than software, when properly
implemented the assurance gain is great. The form-
factor is not as important as the existence of an
isolated processor and address space for assured
operations – an “Island of Security,” if you will. Such
devices can communicate with each other through
secure protocols and provide a web of security
connecting secure nodes located across a sea of
insecurity in the global net.

I find it depressing that the hardware industry has
provided hardware security functionality (from the
Trusted Platform Group and others) now installed in
processors and motherboards that is not yet accessed

or used by the controlling software, whether an OS or
an application.

10. Security systems engineering

How do we get high assurance in commercial
gear?
 a) How can we trust, or
 b) If we cannot trust, how can we safely use,
 security gear of unknown quality?

Note the difference in the two characterizations
above: how we phrase the question may be important.
For my money, I think we need more focus on how to
use safely security gear of unknown quality (or of
uncertain provenance).

I do not have a complete answer on how to handle
components of unknown quality, but my thoughts lean
toward systems engineering approaches somewhat
akin to what the banking industry does in their
systems. No single component, module, or person
knows enough about the overall transaction processing
system to be able to mount a successful attack at any
one given access point. To be successful the enemy
must have access at multiple points and a great deal of
system architecture data.

Partition the system into modules with “blinded
interfaces” and limited authority where the data at any
one interface are insufficient to develop a complete
attack. Further, design cooperating modules to be
“mutually suspicious,” auditing and alarming each
other’s improper behavior to the extent possible.

For example: if you are computing interest to post
to accounts there is no need to send the complete
account record to a subroutine to adjust the account
balance. Just send the current balance and interest
rate, and on return store the result in the account
record. Now the interest calculating subroutine cannot
see the data on the account owner, and therefore
cannot target specific accounts for theft or other
malicious action. We need to trust the master exec
routine, but minimize the number of subroutines we
need to trust. Yes, I know this is over-simplified, but
you get my drift.

In addition, to guard against “unintended extra
functionality” within given hardware modules or
software routines, the development philosophy needs
to enforce something akin to “no-lone zones” in that
no single designer or coder can present a “black-box”
(or proprietary?) effort to the system design team that
is tested only at its interfaces and is then accepted.

Review all schematics and code (in detail, line by
line) for quality and “responsive to stated
requirement” goals. This review should be by parties
independent of the designer. This is expensive, but not

far from processes required today in many quality
software development environments to address
reliability and safety concerns.

This of course requires all tools (compilers, CAD
support, etc.) used in the development environment to
be free of malice; that can be a major hurdle and a
difficult assurance task in and of itself (remember the
Thompson compiler in “Reflections on Trusting Trust,
CACM 1983)!

The “Open Source” movement may also provide
value in this area. There are pluses and minuses with
open source, but from the security viewpoint, I believe
it is primarily a plus.

Further architectural constraints may be imposed
to make up for deficiencies in certain modules. Rather
than (or in addition to) encryption in application
processes prior to transmission to other sites which
could be bypassed or countered by a malicious
operating system, you might require site-to-site
transmissions to go through an encrypting modem or
other in-line, non-bypassable link encryptors.

Link encryption in addition to application layer
encryption is an example of a “Defense in Depth”
strategy that attempts to combine several weak or
possibly flawed mechanisms in a fashion robust
enough to provide protection at least somewhat
stronger than the strongest component present.

Synergy, where the strength of the whole is
greater than the sum of the strength of the parts, is
highly desirable but not likely. We must avoid at all
costs the all-too-common result where the system
strength is less than the strength offered by the
strongest component, and in some worst cases less
than the weakest component present. Security is so
very fragile under composition; in fact, secure
composition of components is a major research area
today.

Good system security design today is an art, not a
science. Nevertheless, there are good practitioners out
there that can do it. For instance, some of your prior
distinguished practitioners fit the bill.

This area of “safe use of inadequate components”
is one of our hardest problems, but an area where I
expect some of the greatest payoffs in the future and
where I invite you to spend effort.

11. Third party testing

NIST (and NSA) provide third-party testing in the

National Information Assurance Partnership
Laboratories (NIAP labs), but Government
certification programs will only be successful if users
see the need for something other than vendor claims of

adequacy or what I call “proof by emphatic assertion –
Buy me, I’m Good.”

If not via NIST or other government mechanism,
then the industry must provide third-party mediation
for vendor security claims via consortia or other
mechanisms to provide independent verification of
vendor claims in a way understandable by users.

12. Market/legal/regulatory constraints

Market pressures are changing, and may now help
drive more robust security functionality. The
emergence of e-commerce in the past decade as a
driver for secure internet financial transactions is
certainly helpful, as is the entertainment industry’s
focus on digital rights management. These industries
certainly want security laid on correctly and robustly!

I hope citizens will be able to use the emerging
mechanisms to protect personal data in their homes, as
well as industry using the mechanisms to protect
industry’s fiscal and intellectual property rights. It is
simply a matter of getting the security architecture
right.

I wonder if any of the industry consortia working
on security for digital rights management and/or
electronic fiscal transactions have citizen advocates
sitting on their working groups.

Lawsuits might help lead to legal “fitness-for-use”
criteria for software products – much as other
industries face today. This could be a big boon to
assurance – liability for something other than the
quality of the media on which a product is delivered!

Recall that failure to deliver expected
functionality can be viewed, in legal parlance, as
providing an “attractive nuisance” and is often legally
actionable.

One example is a back yard swimming pool with
no fence around it. If a neighbor’s child drowns in it,
you can be in deep trouble for providing an attractive
nuisance. Likewise, if you do a less than adequate job
of shoveling snow from your walk in winter
(providing the appearance of usability) you can be
liable if someone slips on the ice you left on the
surface. Many software security products today are
attractive nuisances!

All you need do is to Google “Software Quality
Lawsuits” or a similar phrase, and you can find plenty
of current examples of redress sought under law for
lack of quality in critical software. Do not attempt to
manage defects in software used in life-critical
applications. Remove them during the development
and testing processes! People have died due to poor
software in medical devices, and the courts are now
engaged; the punitive awards can be significant.

One example of a lawsuit already settled: General
Motors Corp. v. Johnston (1992). A truck stalled and
was involved in an accident because of a defect in a
PROM, leading to the death of a seven-year old child.
An award of $7.5 million in punitive damages against
GM followed, in part due to GM knowing of the fault,
but doing nothing.

There are social processes outside the courts that
can also drive vendors toward compliance with quality
standards.

One of the most promising recent occurrences in
the insurance industry was stated in the report of
Rueschlikon 2005 (a conference serving the insurance
industry). Many participants felt that, “The insurance
industry’s mechanisms of premiums, deductibles, and
eligibility for coverage can incent best practices and
create a market for security . . . This falls in line with
the historic role played by the insurance industry to
create incentives for good practices, from healthcare to
auto safety . . . Moreover, the adherence to a set of
best practices suggest that if they were not followed,
firms could be held liable for negligence.”

Bluntly, if your security product lacks sufficient
robustness in the presence of malice, your customers
will have to pay more in insurance costs to mitigate
their risks.

How the insurance industry will measure best
practices and measure compliance are still to be
worked out, but I believe differential pricing of
business disaster recovery insurance based in part on
quality/assurance (especially of security components)
is a great stride forward in bringing market pressure to
bear in this area!

13. Summary

In closing, I reiterate that what we need most in
the future is more assurance rather than more
functions or features. The malicious environment in
which security systems must function absolutely
requires the use of strong assurance techniques.

Remember: most attacks today result from
failures of assurance, not failures of function.

Rather than offer predictions, try for a self-
fulfilling prophecy – each of us should leave this
conference with a stronger commitment to using
available assurance technology in products! It is not
adequate to have the techniques; we must use them!

We have our work cut out for us; let’s go do it.

In closing, I would like to thank Steven

Greenwald, Brad Martin, and Greg Shipley for their
insights and help in preparing this article.

