> Improving Cyber-Security
through Predictive Analysis

Peter Frometa
SPSS

21 November 2005
Copyright 2003, SPSS Inc. 1




Detect Money
Identify Cyber Threats Laundering Behavior

Identify Insider Threats Detect Fraud

Detect Smuggling and Drug Identify True Identity of

Trafficking Associations Individuals
Predict Non-Compliance Better Allocate Security
of Foreign Visitors Resources
Ensure Maritime Domain Discover Terrorist
Awareness Organization Affiliation
Discover Potentially Predict Risk Potential for
Suspicious Inbound Cargo Threats to Safety
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Data Mining Defined

What is Data Mining?

A hot buzzword for a class of techniques that find patterns or relationships
that have not previously been detected

A user-centric, interactive process which leverages analysis technologies
and computing power

Not reliant on an existing database

A relatively easy task that requires knowledge of the organization’s
problem and subject matter expertise
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Text Mining Defined

What is Text Mining?

A user-centric process which leverages analysis technologies and computing
power to access valuable information within unstructured text data sources

Driven by the use of Natural Language Processing and Linguistic based
algorithms...not a search engine

No real value unless used in conjunction with Data Mining

Ultimately, eliminates need to manually read unstructured data sources

Copyright 2003, SPSS Inc.



Beyond Historical Reporting
REACTIVE

Historical Reporting
What are the top source/destination countries?
What are the top attacked products?
What are the top offending ISP’s
What IP’s have led to the most events?
What ports are scanned the most?
What are the IDS event counts for the past day, week, month?

PROACTIVE

Predictive Analytics

What activity within the unidentified data of the top source/destination countries is likely to be
malicious?

Of those identified to be malicious, which is likely to be the worst?

What are the characteristics/ vulnerabilities of products likely to be attacked?

Which activity did not get flagged that is likely to be malicious?

Which flagged items are most likely to be false positives?

What can we expect the IDS event counts to be next week, month, etc.?

What activity is likely to be associated with worm emergence?

Which isolated events are likely to be associated with originating from the same source?



NetFlow Data

. 7| srcip dstip | sreport dstport ipvotoco!J packets J bytes 1 flags l strttime J duration [ endtime |

1 166.94.234.13 192.35.251.135 53 113 17 1 135 A 28-SEP-04 0 28-SEP-04 F
2_;216.239.57.99 206.33.100.4 ‘ 53 ZOSOv 17. 1 135 A 28-SEP-04 1' 28-SEP-04 P
3 !l7.25’~,3.183 192.35.251.74 53 30555 17 1 121 A 28-SEP-04 3 28-SEP-04 F
771209.202.248,202 192.35.251.74 53 30555 17 1 170 A 28-SEP-04 0 28-SEP-04 P
.5 7I208.4S,133»23 200.150.13.120 ‘ 53 » 1004‘ 17 1 194 A 28-SEP-04 ‘ 1 » 28-SEP-04 P

sIP - source IP address (IP address of host that sent the IP packet)
dIP - destination IP address

sPort - port used by the source IP address

dPort - port used by the destination IP address

pro - IP protocol (primarily TCP/UDP in this data)

packets - packet count

bytes - byte count

flags - Transfer Control Protocol header flags

sTime - start time of flow (GMT)

dur - duration of flow (eTime - sTime)

eTime - end time of flow (GMT)

sr - source name or ID of sensor that picked up the data
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Where Does Predictive Analytics Fit?

Level 1 Analysis

Level 2 Analysis

Stop an intrusion event
Log Data

Report

Based on:

Associate multiple similar intrusions
Classify organized intrusions

|ldentify state sponsored cyber terror

Net Flow data

(source and destination IP address,
protocol, packets, bytes, flags...)
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Net Flow data

Response data

Correlated Incidents, historical data
Keystroke logging

other...



valld web traffic v4.2* - Clementine 11.0
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# valid web traffic v4.2* - Clementine 11.0
File Edit

Insert View Tools Superhode Window Help

NMEEEEOECIEERAEIO JEEEN

— (&) (B)+— — |

sp80-22jan_04-08.txt Partition known orgunknown  known_webservers.txt Table

: [ Streams | Outputs | Models |

[%) Streamt
©- [#3) Port Scanning v3.0
Zy|valid web traffic v4.2

FEEE

e
@ —Ih —b@ c,&'/ Table

Strip Blanks Type

SQL

Database

Q,

Analysis

known or unknown

Classes |

>

@ Rule 9for valid web traffic (S69; 0,972)
if bytes <= 610
and  bytes per packet > 186
and flags=4A
then valdwebtrafic ] s B IO st
@ Rule 10for wvalid web traffic (34; 0.972) Output r M Export |

F bytes per packet > 363 @ @ | |2 Ls%.l

and  bytes per packet <= 364
istogram  MNeural Net Kohonen  €5.0  C&R Tree K-Means Table  Flat File Database

and dur £=n et

| Model | Summary | Settings | Annotations |

D
| ok || concel | | Ep) || Roset I ] [77M8 { 1328




4 Stream1* - Clementine 9.0
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(SlFile (7 Edt ¢ Generate @@@m

date time | src | prota| s_port| num | orig | action| dst | octet 1| src octet 2| src oct ‘ ( Streams r A\ Outputs rModels |

1 0:01:54 144.136.82.3 tcp 55241 2134/144.73.71.201 |drop |144.73.205.185 144 136 - i
2 1-Apr-05  0:04:01 144.136.82.3 |tcp 59867 4736/144.73.71.201 |drop |144.73.169.165 144 136 ©- E] Port Scanning v2.2
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5 1-Apr-05  0:05:12 144.136.82.3 |tcp 62378 6139/144.73.71.201 drop |144.73.35.187 144 136
5 1-Apr-05  0:05:13 144.136.82.3 |tcp 62419 6153/144.73.71.201 |drop |144.73.251.250 144 136
7 1-Apr-05  0:05:36 144.136.82.3 tcp 63243 6552|144.73.71.201 |drop |144.73.194.174 144 136
3 1-Apr-05 0:06:21 144.136.82.3 |cp 64826/ 7508/144.73.71.201 |drop |144.73.88.20 144 136
J 1-Apr-05 | 0:08:59 144.136.82.3 tcp 8297| 10721/144.73.71,201 |drop |144.73.201.46 144 136
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& honeypot clustering v.1* - Clementine 11.0
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& honeypot v2.1 - Clementine 9.0
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# Employee Data" - Clementine 11.0
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4 natch keywords - Clementine 8.0
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Selected documents are run through Clementine’s linguistics based
text extraction engine. Linguistics-based text mining finds meaning
in text much as people do—by recognizing a variety of word forms as
having similar meanings and by analyzing sentence structure to

provide a framework for understanding the text. This approach offers

the speed and cost-effectiveness of statistics-based systems, but it
offers a far higher degree of accuracy while requiring far less human
intervention.
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4 etwork intrusion model - Clementine 8.0
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4 etwork intrusion model® - Clementine 8.0
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4 ;etwork intrusion deployment - Clementine 8.0 |;H§HX|
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1 3152.63.54.10 Class B 152.63 Female [IT staff - Level 2 Clearance 6 MidSize 25 Between $15,000 and $3(
2 29146,188.162.165 Class B 146,188 Female Management - Level 1 Clearance 6 MidSize g 473 Between $15,000 and $Sq
3 1755/157.130,33.58  |Class B |157.130 Male  |Management - Level 3 Clearance | $null$ Luxury - Any Size (gl 44 Between $15,000 and $3q
4 1955/146.188.162.165 (Class B 146,188 [Female Accounting - Level 3 Clearance | 6 Sport Utility High R 221 Between $15,000 and $3C]
5 1982/157.130.33.58  Class B |157.130 [Female Management - Level 1 Clearance | 6 SubCompact High R 82 Between $15,000 and $3(
3 2942146,188.136.165 [Class B |146,188 Male  Human Resources - non secure 4 Sport Utility High R 19 Between $30,000 and $6(
7 3367157.130.33.58  [Class B |157.130 Female Management - Level 3 Clearance 7 Truck 224 Between $15,000 and $3(
3 3371157.130.33.58  ClassB |157.130 Male  Accounting - Level 3 Clearance 8/SubCompact 97 Between $30,000 and $6(
3 3439157.130.194.73 |Class B |157.130 Male  Accounting - Level 3 Clearance 6 Sport Utility 43 Between $15,000 and $3(
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Final Thoughts and Questions

e VisIt WWW.SPSS.com

e Future Questions:

e Peter Frometa - pfrometa@spss.com
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