

Secure The Data, Not The Infrastructure A New Approach to Data Protection

Mark Schertler Voltage Security

December 2006

Data Protection Is Becoming More Complex

- Wide-ranging set of data protection drivers
 - Specific mandates
 - PCI, contractual obligations
 - Risk-management based
 - SOX, HIPAA, EU Data Protection Directive, PIPEDA
 - Mandatory disclosure
 - 17 states, upcoming Federal law
- Data protection requirements now impact entire enterprise architecture
 - No longer limited to specific business units/IT systems

Defending Networks Is Hard

- Existing networks are architected like the Winchester
 Mystery House in San Jose, California
 - Grown over time instead of planned
 - Constructed 24 hours a day for 38 years
- This won't change any time soon

Networks like these are becoming more and more integrated with those of business partners

Where exactly is the network perimeter?

- It's not always clear where one network ends and another one begins
- Credit card processing
 - Merchants
 - Banks
 - Credit card companies
- Health care
 - Payers
 - Providers
- This makes defending the perimeter of the network even more difficult

Current Data Protection Models

- Focus on "vulnerable" parts of the network
 - But can you really distinguish what's "vulnerable"?
- Assume a "them and us" mentality
 - But can you still identify "them" and "us"?
- Assume the infrastructure will protect us
 - But do you always have control over the infrastructure?

A New Approach

- Instead of protecting the network, protect the data
 - Make security data-centric instead of network-centric
- The easiest way to do this is to encrypt data, so that only an authorized user can decrypt it
- Can we find a feasible way to protect data by encrypting it?

Identity-Based Encryption

- Basic idea: Public-key encryption where identities & classifications can be used directly as encryption public keys
- Eliminates the need for certificates & certificate infrastructure
 - Removes the usability and manageability problems inherent in PKI-based solutions
 - Simplifies Traditional PKI
- IBE Public Key:

"alice@corp.com"
or
"Engineering"
or
"Restricted"

RSA Public Key:

Public exponent=0x10001
Modulus=13506641086599522334960321627880596993888
1475605667027524485143851526510604859533833
9402871505719094417982072821644715513736804
1970396419174304649658927425623934102086438
3202110372958725762358509643110564073501508
1875106765946292055636855294752135008528794
1637732853390610975054433499981115005697723

IBE: Groups and Policies

- ▶ IBE is not restricted to using identities as keys
- Encrypt to a group: Engineering
 - To retrieve the key, the user/application must authenticate as a member of the Engineering group
 - Leverage existing directory structures (AD, LDAP)
 - As group membership in directory changes, key access rights change dynamically as well
- Encrypt to a policy name/classification: PCI
 - To retrieve the key, the user/application must meet the policy defined at the server
 - Example: Asking for "PCI" key might query back-end ERP system and execute business logic
- Extremely difficult to do with PKI
 - Group certificates create major revocation and distribution problems

Policy & IBE

Policy Definition

"HIPAA"

Internal Auth via Directory External Auth via Strong Pass Machine Must Be HIPAA-Approved Delegate Access for HIPAA Admins

Log HIPAA event Notify HIPAA Officer

Policy-Based Encryption

- Define canonical privacy policies
 - e.g. "HIPAA", "PCI", "Confidential", "Classified", ...
- Define elements of policy on server
 - e.g. "HIPAA" requires delegated access, auditing, etc.
- Encrypting agents specify privacy policy as part of key
 - Do not need to understand individual policy elements
- Privacy policy enforced by server
 - Policy can be modified over time

Policy Based Encryption

Universal Privacy Enforcement

Privacy Policy
Enforced
Consistently
Regardless of
Application or
Channel

Data-Centric Security Model

- Focus on the data, not the infrastructure
 - Assume that data can end up anywhere
- Make security travel with the data
 - Data should be protected wherever it lives, inside and outside the network
- Build security into the application layer
 - Don't rely on surrounding infrastructure to do the right thing

Key Requirements for Data-Centric Security

- Data discovery & classification
 - Need to understand where data is created
 - Drive enforcement policies based on classifications
- Security-integrated application development process
 - Need to incorporate data protection as part of initial design
 - Remediation strategy for existing applications
- Centralized key management
 - Common data protection architecture ensures interoperability across applications
 - Speeds development and deployment

Summary

- Data privacy is a growing regulatory concern
- Technological advancements in PKC and encryption usability now make broad data protection possible
- Implementing a comprehensive, policy based data centric approach drastically simplifies compliance and data protection programs

Questions?

www.voltage.com

Building and Administering Applications

What do architects & developers need to think about?

- PKI model (data-centric):
 - Who should have access to the data?
 - How do I map those access rights to a cert?
 - How do applications find the right cert?
 - How do I ensure cert validity?
 - How do you keep the CA & directory synched?
 - ...
- ▶ IBE model (data-centric):
 - Who should have access to the data?

