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Abstract

This paper discusses the importance of keeping practi-
tioners in mind when determining what research to pursue
and when making design and implementation decisions as
part of a research program. I will discuss how my 30 plus
years of security research have been driven by the desire
to provide products, tools, and techniques that are useful
for practitioners. I will also discuss my view of what new
security challenges the future has in store for us.

1. Introduction

I am really thrilled that you chose me for the Distin-
guished Practitioner Award. Throughout my research ca-
reer I have always tried to work on problems whose solu-
tion would be useful to others. My approach to research has
been one of not just developing new theories, but rather to
take the theoretical ideas that I have produced and reduce
them to practice. I have always wanted my developments to
be used by practitioners. Whenever possible I have tried to
provide tools and techniques that others could use to solve
the same problems on similar systems or to solve similar
problems.

Unfortunately, I do not think that my view is shared by
many academic researchers. It is more common for aca-
demic researchers to ask “What research can I pursue that
will give me a quick route to publishable papers?” or “What
can I do to get more funding?”’. My approach to research is
likely the result of having spent eight years in the trenches
as a programmer, system designer, and IT manager before
pursuing my PhD and jumping to the academic side.

I would like to say a few words about why I think it is
important to keep the practitioners in mind when determin-
ing what research to pursue and when making design and
implementation decisions as part of a research program. In

my view, the goal of every research project should be that it
ends up in use. That is, the research should produce a useful
technique, a useful tool, a useful product, or a combination
of these three. A question that may be raised is useful to
who? For instance, an academic researcher might consider
their research effort to have produced a useful product if it
resulted in a published paper. I believe that the touchstone
here is to ask would a practitioner use my technique, tool,
or product? As researchers we should strive to make sure
that practitioners are aware of our work (ACSAC is a good
venue for this), that our work is relevant to the practitioner
(will it make their life easier?), and will the practitioner be
able to use it (does it require a special expertise that most
practitioners do not have?).

In the next section I will discuss how my 30 plus years of
security research have been driven by the desire to provide
products, tools, and techniques that are useful for practition-
ers. At the end of each section I will point out what result
(i.e., technique, tool, or product) was produced. I will also
try to point out some lessons that I learned along the way.
In section 3, I will discuss my view of what new security
challenges the future has in store for us.

2. Examples From Thirty Years of Experience
2.1. Data Secure Unix

Thirty some years ago I started working in Computer Se-
curity. My path to get here was different from most. I was
primarily interested in Formal Methods and I was looking
around for a real application that needed a high level of
assurance. At this time most of the formal methods re-
searchers were proving properties about small programs,
such as sorting algorithms. Although I believe that hav-
ing a sorting algorithm work correctly is a good idea, I was
looking for something more useful and large. I chose the
Data Secure Unix kernel as my application. Data Secure



Unix was a kernel structured operating system, which was
constructed as part of an ongoing effort at UCLA to develop
procedures by which operating systems could be produced
and shown to be secure [48]. Furthermore, because this was
a real operating system kernel, I felt that it was important
to get a correct statement of what security properties were
being proved.

The proof that the kernel is secure had two parts: a) de-
veloping four levels of specifications, ranging from the top-
level security criterion to the Pascal code, and b) verifying
that the specifications at these different levels of abstraction
were consistent with one another. The top-level formalized
our intuitive notion of data security for the kernel. The next
level contained operations corresponding to uninterruptible
kernel calls and more specific objects like pages, processes,
and devices. The low-level specification, which used data
structures from the implementation, were still at a higher
level than the code because detail was omitted and some
abstracting of the data structures was employed. The lowest
level was the actual code.

When starting this work, I looked around and found that
Waulf, London and Shaw had developed a refinement tech-
nique for their object oriented language Alphard [49, 41].
Their methodology provided a formal framework to prove
that abstract specifications of an abstract data type are con-
sistent with the code that implements that type. Their refine-
ment techniques allowed one to go from a high-level spec-
ification to code. I extended and altered this work to allow
for multiple levels of specification, and eventually code.

This experience addressed all aspects of specification
and verification in a significant software project. That is,
we verified a large-scale, production level software system,
including all aspects from initial specification to verifica-
tion of the implemented code. The result of this work was a
refinement fechnique for formally specifying and verifying
large multi-level specifications down to the implemented
code. The proofs were all done by hand, using a derivation
approach presented by Kalish and Montague [22]. Next, the
AFFIRM verification system [14] at ISI was employed as a
proof checker to verify the proofs. The full details of the
verification can be found in [48].

Result: Technique

Lesson learned: Stand on the shoulders of others, not
their toes.

2.2. Covert Channels

Secure computer systems use both mandatory and dis-
cretionary access controls to restrict the flow of information
through legitimate communication channels, such as files,
shared memory, and process signals. Unfortunately, in prac-
tice one finds that computer systems are built such that users
are not limited to communicating only through the intended

communication channels. As a result, a well-founded con-
cern of security-conscious system designers is the poten-
tial exploitation of system storage locations and timing fa-
cilities to provide unforeseen communication channels to
users. These illegitimate channels are known as covert
storage and covert timing channels. The idea is that covert
channels use entities not normally viewed as data objects,
such as file locks, device busy flags, and the passing of time,
to transfer information from one subject to another.

I was introduced to covert channels early in my academic
career. I was consulting for Systems Development Corpo-
ration (SDC) in Santa Monica and they were subcontracting
to a company called Digital Technology Incorporated (DTI)
in Champaign, Illinois. The product that DTI was develop-
ing was a secure network front-end for the AUTODIN II
network [17]. One of SDC’s tasks was to perform a covert
channel analysis on the network front-end, and I was asked
to lead this project. One of the first questions that I asked
was “What method did people use to discover covert chan-
nels in the past?”. The response I got was “Well we found
this channel on system XX or that channel on system YY.”
I quickly concluded that there was no approach; everything
was ad hoc. The closest thing to an approach was to see
if a channel that was known to exist in one system also oc-
curred in the system being analyzed, such as using the lock
bits on a file to signal information. The second question I
asked was “How do you know when you are done?”. Again
I was greeted with a lot of blank stares. One thing that was
perfectly clear to me was that we needed something more
rigorous than the ad hoc approach that was currently being
used.

The Shared Resource Matrix (SRM) methodology is the
approach that we developed to locate covert channels. This
approach can be applied to a variety of system description
forms and can increase the assurance that all channels have
been found. It is easily reviewed, disregards resources that
are not shared, and is iterative as the design is refined or
changed. It can be used in all phases of the software life cy-
cle on systems whose constituent parts are in varying phases
of development.

Storage and timing channel analysis is performed in two
steps in the Shared Resource Matrix methodology. First,
all shared resources that can be referenced or modified by
a subject are enumerated, and then each resource is care-
fully examined to determine whether it can be used to
transfer information from one subject to another covertly.
The methodology assumes that the subjects of the system
are processes and that there is a single processor which is
shared by all of the processes. The processes may be local
or distributed; however, only one process may be active at
any one time.

The key idea is that the nondata objects that are used
for covert channels are resources that are needed to regis-



ter the state of the system. A shared resource is any object
or collection of objects that may be referenced or modified
by more than one process. The Shared Resource Matrix
is a way of displaying the attributes of each resource and
the operations that can manipulate them. Attributes of all
shared resources are indicated in row headings of the ma-
trix, and the operation primitives of the system make up the
column headings. After determining all of the row and col-
umn headings one must determine for each attribute (the
row headings) whether the primitive indicated by the col-
umn heading modifies or references that attribute. The gen-
erated matrix is then used to determine whether any chan-
nels exist. For a storage channel the sending process alters
a particular data item, and the receiving process detects and
interprets the value of the altered data to receive information
covertly. With a timing channel the sending process modu-
lates the amount of time required for the receiving process
to perform a task or to detect a change in an attribute, and
the receiving process interprets this delay or lack of delay
as information.

The result of this research was a technique for identify
covert channels, the SRM. The system that the technique
was applied to was DTT’s Communications Operating Sys-
tem Network Front End (COS/NFE) [17]. Clearly my ex-
ample system for testing the SRM approach was a real sys-
tem. Unfortunately, in addition to being real, it was propri-
etary. Proprietary systems pose a problem for academics,
who are rewarded for publishing papers. As I was devel-
oping the SRM approach and applying it to the COS/NFE I
was aware that as long as the COS/NFE was proprietary, I
could not publish the details of my work. When I expressed
my concern to the DTI management, I was told that it would
only be proprietary for another six months. After two years
of waiting and the system remaining proprietary, I finally
wrote a paper presenting the SRM and showing the results
of applying it to a toy problem. The journal that I submit-
ted it to rejected the paper saying that it would never work
for a real system, even though I mentioned the name of the
real system and gave baud rates for the worst case covert
channels that were found.

Result: Technique

Lesson learned: Real systems are often proprietary or
classified. This could be counter productive when trying to
get tenure.

Postscript: Four years later I got the paper published in
ACM Transactions on Computer Systems [27] by expound-
ing on the fact that even though the example used was a toy
it had the properties of a real system and again pointing to
the real system (still proprietary at that time) that was eval-
uated.

2.2.1 Honeywell Secure Ada Target

In 1986 both the Shared Resource Matrix (SRM) approach
and the noninterference approach [16] were applied to a
high level design for a real system — the Honeywell Se-
cure Ada Target (SAT). The SAT was intended to meet or
exceed all of the requirements for Al certification. A for-
mal model of the SAT was expressed in the GYPSY for-
mal specification language. Both techniques were applied
to the Gypsy abstract model of the SAT. In this case, val-
ues for the initial Shared Resource Matrix were provided
by the Gypsy flow analyzer, which analyzed the specifica-
tion and/or code. Each operation in the matrix corresponded
to a Gypsy function or procedure, and the flow analyzer de-
termined what components of the program’s security state
were read and/or modified by each operation. For the nonin-
terference approach the failed proofs of the unwinding the-
orems lead the analyst to the flows to consider, but, like the
Shared Resource Matrix approach, it too did not aid the ana-
lyst in the actual analysis. With both approaches the analyst
had to come up with the signaling sequences and determine
whether they could be used as covert channels. Both meth-
ods were successful in detecting covert channels. A detailed
discussion of the application of both techniques and the na-
ture of the covert channels discovered can be found in [18].

Result:

Lesson learned: Don’t be afraid to run a head—to—head
experiment with your technique or tool. This is how you get
credibility.

2.2.2 Covert Flow Trees

As mentioned above, the SRM approach and the noninter-
ference approach were used to determine what attributes
might be used for signaling information. Neither approach
produced the sequence of operations necessary to covertly
signal the information. In 1991 Phil Porras and I introduced
the idea of using tree data structures to model the flow of in-
formation from one shared attribute to another [23]. These
trees were called Covert Flow Trees (CFTs). CFTs are used
to perform systematic searches for operation sequences that
allow information to be relayed through attributes and that
are eventually detected by a listening process. When tra-
versed, the paths of a CFT yield a comprehensive list of op-
eration sequences that support communication via a partic-
ular resource attribute. These operation sequences are then
analyzed and either discharged as benign or determined to
be covert communication channels. That is, the analyst with
his/her experience is still the one that makes the determina-
tion. The Covert Flow Tree tool, which was an implemen-
tation of this approach was built and distributed.

Result: Tool

Lesson learned: It is beneficial to take a fresh look at an
area.



2.2.3 A modular approach to using the SRM

In 1996 Data General Corporation decided that they wanted
their trusted DG/UX operating system to undergo a B2 eval-
uation. DG/UX was a full commercial-strength UNIX sys-
tem with many features and support for a wide range of
devices. The part of the system that was to be analyzed
for covert channels was on the order of 800,000 lines of C
code. The kernel was structured so that each of the elements
of the system state was under the control of a single subsys-
tem. That is, these elements could only be referenced or
modified by functions of the controlling subsystem; thus,
each subsystem could be thought of as an abstract object.

In order to make the covert channel analysis task for the
Trusted DG/UX kernel more manageable and, in particular,
to deal with the Ratings Maintenance Program (RAMP), a
modular approach that takes advantage of the subsystem ar-
chitecture was developed. The approach leveraged the sub-
system architecture of the DG/UX kernel. First, an SRM
analysis was performed on each of the subsystems that con-
tained an exported function directly invoked from one of the
system calls. These subsystems were called “peer subsys-
tems.” The information from the SRMs for all of the peer
subsystems was then used to build a kernel-wide SRM.

There are two major advantages to this modular ap-
proach to covert channel analysis. The first is that the covert
channel analysis can be decomposed into a number of sep-
arable tasks, which can be distributed among many devel-
opers. The second is that the system can be incrementally
reanalyzed as it changes over time. The details of this work
can be found in [24].

Result: Technique

Lesson learned: Necessity is the mother of invention.

2.3. UNISEX Symbolic Execution Tool

Symbolic execution is an approach that lets algebraic
symbols represent the input values, rather than using nu-
meric or character inputs. These symbols are then manip-
ulated by the program. By placing restrictions on the val-
ues that each symbol may represent the symbolic input rep-
resents a class of input values rather than a single value.
That is, by properly restricting the input values each sym-
bolic execution of a program can correspond to executing
the program on a particular subdomain. When execution
is completed the symbolic values obtained by the variables
are analyzed to determine if they meet the programmer’s
expectations. This method of testing is known as symbolic
execution. A symbolic executor can be used with branch or
path testing to find the restrictions that must be placed on
input values to cause a particular path to be executed. A
symbolic executor can also be used to generate the neces-
sary verification conditions that need to be proved to verify
that a formally specified program is consistent with its entry

and exit specifications. The type of correctness being veri-
fied is partial correctness as originally defined by [15]. That
is, if the entry assertion is true when the program is invoked
and the program terminates, then the exit assertion will be
true when the program halts. The UNISEX system is used
in all three of these ways to test and verify Pascal programs.

This work was motivated by having used someone else’s
symbolic execution system for annotating programs and
proving properties about the programs. The tool that I origi-
nally used was a system called Effigy, which was developed
by Jim King at IBM Watson Labs [34]. Effigy used a PL/1-
like toy language and ran only on IBM mainframe systems.
There were two problems with this: the students were not
familiar with the language, and they were not familiar with
the IBM centralized system. This was particularly bad be-
cause to access the system remotely you had to go through
a terminal server. Effigy was an interactive system that took
the annotated program, compiled it into interactive code,
and then interpretted the user’s commands to symbolically
execute the program. Unfortunately, it was not very robust.
If a user mistyped a command or command argument, the
system got confused and hung. The only way that the sys-
tem could be reset was by physically disconnecting the ter-
minal line. To make things worse, after disconnecting the
terminal it was necessary to wait approximately five min-
utes to reconnect to the terminal server again.

Clearly this was not a satisfactory situation. Therefore,
I decided to build my own symbolic execution system. The
primary goal of the project was to have a testing and formal
verification tool that was useful, particularly for students.
This was the reason for choosing Pascal, which was the first
programming language being taught at most universities at
that time. Another goal was to have a system that could be
used without change at a variety of educational and research
facilities. By implementing the system on UNIX all of the
UNIX tools (eg. editors and pretty printers) were immedi-
ately available.

The result was UNISEX, which is a UNIX-based sym-
bolic executor for Pascal. The UNISEX system provides
an environment for both testing and formally verifying Pas-
cal programs. The system supports a large subset of Pascal,
runs on UNIX-like systems and provides the user with a va-
riety of debugging features to help in the difficult task of
program validation. The system provides the user with sys-
tem features that can be enabled or disabled at will making
the system more useful. By allowing the user to control
the amount of information provided by the system during a
symbolic execution, the user is neither left in the dark nor
inundated with more information than desired. The various
display commands also make the system more user friendly.
The details of UNISEX can be found at [32].

Result: Tool

Lesson learned: Rather than just complain about tools



that do not meet your needs, learn from their shortcomings
and build what you need

2.3.1 Ada Symbolic Executor

Several years later when Ada was gaining in popularity,
we developed a symbolic execution approach for execut-
ing concurrent programs written in the Ada programming
language. Extending symbolic execution to concurrent pro-
grams is non-trivial, because concurrent programs are non-
deterministic, and nothing can be assumed about the rela-
tive execution speeds of the concurrent execution units. Our
symbolic execution model considered all relevant interleav-
ings of concurrent execution units [19, 8]. We implemented
a UNISEX-like symbolic executor based on the interleaving
approach. One of the main concerns with this approach is
the large number of states that could be produced. To ad-
dress this concern, we developed methods for pruning du-
plicate paths. It should be noted, however, that although
there are many paths to be considered the actual process of
carrying out the symbolic execution and the corresponding
proof of the generated verification conditions is not com-
plex. It is an error prone job for humans, but is perfectly
suited for automation.
Result: Technique, Tool
Lesson learned: It is necessary to stay current.

2.4. Testing Formal Specifications

My testing formal specifications work is something that
was motivated by my experiences as a specification writer
for real systems. It was my experience that when writing a
high-level specification I would ask myself “what if”” ques-
tions. For instance, I did this when working on the Secure
Release Terminal (SRT) project [20] at SDC. Consider the
case where a user is reviewing a document that is wider
than the display screen and, therefore, requires moving the
screen to the right or left over the document. Furthermore,
assume that the screen is on the far right side of the docu-
ment (some text on the left is hidden) and the user asks to
scroll down. Should the screen display the part of the doc-
ument directly below its current position without moving to
the far left, or should it display the far left portion of the
lines? I believe the desired result differs based on whether
the user is viewing text documents or CAD diagrams. The
important thing is that if the deign constrains the implemen-
tation to one of the two results and the customer wants the
other, then there is a problem.

More generally, the problem is that although the spec-
ification satisfies the correctness criteria, there may be no
implementation that is consistent with the specification and
at the same time provides the desired functionality. The
real problem is that this is usually not discovered until the

design has gone through several levels of refinement, with
each level being formally verified, and the implementation
is in progress or completed. The result is a “yo-yo” effect
where the designer goes back to the top level and rewrites
the specification to allow an implementation that provides
the desired functionality while preserving the correctness
criteria.

This “yo-yo” effect is costly and time consuming, partic-
ularly where proofs have to be redone, because the specifi-
cation has changed. An approach to reducing the “yo-yo”
effect is to test the specifications to see if they allow the
desired functionality, particularly for special cases. For in-
stance, one could test what the result of performing a par-
ticular sequence of operations would be when starting in a
particular configuration. This can be achieved by execut-
ing some test cases to see if the desired results are obtained.
The problem is that most specification languages are non-
procedural. My initial approach to this problem was to use
a pencil and paper to calculate the result of executing the
specifications.

In [28] I presented two approaches to solving this prob-
lem. The first is to convert the nonprocedural specifications
into a procedural form. This procedural form then serves as
arapid prototype to use for testing. The other approach is to
perform a symbolic execution of the sequence of operations
and check the resultant symbolic values to see if they define
the desired set of resultant states. The paper discusses the
advantages and disadvantages of each approach.

I decided to implement the symbolic execution approach,
because I thought it was the more usable approach and I
could build on my experience in building the UNISEX sym-
bolic executor. The symbolic execution tool that we built
was called Inatest [12]. The formal specification language
processed by the tool was Ina Jo, which is a nonprocedural
assertion language that is an extension of first-order pred-
icate calculus. The language assumes that the system is
modeled as a state machine. A complete description of the
Ina Jo language can be found in the Ina Jo Reference Man-
ual [37].

Result: Technique, Tool

Lesson learned: Many good research projects rise out
of problems that are encountered when working on what
appears to be an unrelated project.

Build on your previous work.

2.5. Verification Assessment Study

In 1984 the National Computer Security Center asked me
to lead a study that was to determine the state-of-the-art of
formal verification systems. The study began in November
1984 and lasted for approximately nine months. The main
goal of this effort was a technology interchange among the
developers of four established verification systems. The



systems investigated were i) Affirm (General Electric Com-
pany, Schenectady, New York), ii)) FDM (System Devel-
opment Corporation, Santa Monica, California) iii) Gypsy
(the University of Texas at Austin, Austin, Texas), and iv)
Enhanced HDM (SRI International, Menlo Park, Califor-
nia). There was some comparative work on examples, but
the main idea was for the developers to learn the details of
each other’s system as a basis for future development.

The approach taken for this study was first to select a
suitable set of example problems to be used to investigate
the established systems. Each of the systems in turn was
used to specify and verify these problems. The specification
and verification was performed by the development team for
each system. One member of each system’s development
team was picked as the “representative” for that particular
system. The system representatives were well established
with regard to their in-depth knowledge of the particular
verification system. In most cases the representative was
one of the original developers of the system.

For each of the four systems, the specification and ver-
ification of the example problems was done by the devel-
opment team for that particular system. The nonresident
members of the assessment group then visited the home site
of each system to study the system and the solutions to the
problems. During the site visits, each participant was al-
lowed to study the system in any way he or she wished.
Usually, this meant that the participant defined a favorite
problem and investigated the effects that the system had on
the development of a solution. For example, I worked with
a secure release terminal example [20], on each of the four
systems.

Through this technical interchange, members of both
the assessment group and the system development teams
were able to learn about each other’s system and to use this
knowledge as a basis for future development. After visit-
ing a site, each of the nonresident participants prepared a
critique of that particular system.

After all the site visits had been completed, the assess-
ment team convened at the University of California in Santa
Barbara, California, to compare their findings, to discuss the
relevant verification technology issues that were raised dur-
ing the study, and to propose future directions for verifica-
tion research. The final report for this project was five vol-
umes — one for each system and an executive overview [29].

After the project was done and all the reports were ready
to be copied and distributed, the sponsoring agency offered
to copy the report and mail it to our list of recipients. The
report was five volumes and totaled more then 1400 pages,
and I was on sabbatical at the time. If I were to do the copy-
ing and mailing myself, I would have to schlep the reports
to Kinkos to be copied and to the Post Office to be mailed.
Therefore, even though I had the funds in the contract to do
this, I accepted what appeared to be a kind offer.

Little did I know that the report would be marked “re-
stricted by the Arms Export Control Act.” More than half
of the 150 names that I had on my distribution list were
unable to receive the report, because they were foreign na-
tionals. This was in spite of the fact that my contract had
no publishing restrictions and I did not need prior approval
before publishing. Needless to say, this was not a good sit-
uation. I worked for more than two years to try and get the
report released, but with no success.

Result:

Lesson learned: Always look a gift horse in the mouth.

2.6. ASLAN Formal Specification Language

One of the benefits of working on the verification assess-
ment study was that I had formulated a good idea of what I
wanted in a formal specification language. Previously when
publishing papers on my work with SDC’s Ina Jo specifica-
tion language, I would change the syntax to be more read-
able. This variation of the Ina Jo syntax was what I used as
the basis for my specification language, called ASLAN.

The ASLAN specification language is built on first or-
der predicate calculus with equality and employs the state
machine approach to specification. The system being spec-
ified is thought of as being in various states, depending on
the values of the state variables. Changes in state variables
take place only via well defined transitions. Predicate cal-
culus is used to make assertions about desired properties
that must hold at every state and between two consecutive
states. Critical requirements that must be met in every state
are state invariants.

To prove that a specification satisfies some invariant as-
sertion, ASLAN generates the candidate lemmas needed to
construct an inductive proof of the correctness of the spec-
ification with respect to the invariant assertion. These lem-
mas are known as correctness conjectures.

An ASLAN system specification is a sequence of lev-
els. Each level is an abstract data type view of the sys-
tem being specified. The first (“top level”) view is a very
abstract model of what constitutes the system (types, con-
stants, variables), what the system does (i.e., state transi-
tions), and the critical requirements the system must meet.
Lower levels are increasingly more detailed. The lowest
level corresponds fairly closely to high level code. ASLAN
generates correctness conjectures whose proofs ensure that
lower levels correctly refine upper levels. A more detailed
overview of ASLAN can be found in [2] and the details of
the language and the proof obligations can be found in [1].

The motivation for defining and implementing the
ASLAN language and the ASLAN specification processor
was much the same as the motivation for building UNISEX.
That is, I wanted a tool that my students could use to learn
how to write formal specifications and prove critical proper-



ties about the system being specified. I took the good things
that I learned from different languages that I had used and
put them in ASLAN. I also implemented the ASLAN spec-
ification processor on the Unix operating system.

The ASLAN system was used by the Microelectronics
and Computer Technology Corporation (MCC), which was
a computer industry research and development consortium.
They used ASLAN as a central component of their Spectra
software development environment. My view was, and still
is, that by making my systems widely available other re-
searchers and practitioners can easily experiment and gain
first-hand experience with the system’s capabilities. There-
fore, when MCC approached me about using the ASLAN
system, I was more than happy to let them have it (free of
charge). I was not so happy, however, when I asked if I
could get a copy of their Spectra software development en-
vironment. They told me that only members of the consor-
tium could get access to Spectra.

Result: Technique, Tool

Lesson learned: Always read the fine print.

2.7. Analyzing Encryption Protocols

When considering a secure network that uses encryption
to achieve its security one must consider both encryption
algorithms and encryption protocols. An encryption algo-
rithm, such as DES or RSA, is used to convert clear text into
cipher text or cipher text into clear text. An encryption pro-
tocol is a set of rules or procedures for using the encryption
algorithm to send and receive messages in a secure manner
over a network.

In 1982 while listening to Manny Blum present his obliv-
ious transfer protocol at CRYPTO 82, I had an epiphany.
My thought was that by specifying encryption protocols for-
mally and by also specifying their critical requirements for-
mally one could generate the necessary proof obligations
to assure that they meet their desired critical properties.
More specifically, the idea is to specify formally the compo-
nents of the cryptographic facility and the associated cryp-
tographic operations. The components are represented as
state constants and variables, and the operations as state in-
variants, and the theorems that must be proved to guaran-
tee that the system satisfies the invariants are automatically
generated by the verification system.

The approach does not attempt to prove anything about
the strength of the encryption algorithms being used. On
the contrary, it may assume that the obvious desirable prop-
erties, such as that no key will coincidentally decrypt text
encrypted using a different key, hold for the encryption
scheme being employed.

When I first tried my idea on some encryption protocols
using Ina Jo for my specification language, I found that the
amount of specification that was necessary to specify as-

sumptions about the the encryption algorithms was so large
that it made it unreasonable to work with the overall spec-
ification. I finally came upon a protocol that was used in
a single-domain communication system using dynamically
generated primary keys and two secret master keys, which
was originally released by IBM with a single master key
and was later recalled to add a second master key, because
of a flaw in the protocol. The details of the system and the
protocol can be found in [38].

What I found when attempting to prove that this protocol
satisfied its critical requirements was that the proofs failed.
However, I found that analyzing the failed proofs gave in-
sight into errors or omissions in the specification or to flaws
in the protocol itself. This experience showed that the ap-
proach was useful for both confirming previously known
flaws and for discovering new flaws. The details of this ini-
tial experience can be found in [30, 31].

In 1990, I along with Cathy Meadows and John Millen
(both of whom by this time were also working on analyzing
encryption protocols) were asked by Gus Simmons to look
at a mobile communication protocol, which was about to be
patented. Gus had already found an error in the protocol,
and he was challenging us to see if we could find it with our
respective systems. By this time I was using an ASLAN-
based symbolic execution system, called Aslantest [11], to
test my encryption protocol specifications. The result was
that I not only found the same error as Gus, but I also found
some previously unknown flaws. Meadows and Millen also
found new flaws with their systems [33].

More recently, I have been using the ASTRAL model
checker, discussed below in section 2.8, to analyze proto-
cols with specific real-time constraints [7]. This work has
revealed a number of flaws and has helped to better under-
stand these complex protocols.

Result: Technique, Tool

Lesson learned: If at first you don’t succeed, then keep
on trying.

Reuse is a good thing. Build on your own work.

2.8. ASTRAL

As discussed in section 2.6, the ASLAN language is for
specifying and verifying sequential software systems. In
the early 1990s, I decided to look at formally verifying real-
time systems. 1 designed a specification language called AS-
TRAL, which was an extension of ASLAN with timing con-
straints. The ASTRAL language allows one to build mod-
ularized specifications of complex systems with layering. I
also developed a formal proof system for proving critical
properties for these systems.

In ASTRAL a real-time system is modeled by a col-
lection of process specifications and a single global spec-
ification [3]. Each process specification is much like the



ASLAN specifications discussed in section 2.6. The AS-
TRAL proofs are divided into two categories: intra-level
proofs and inter-level proofs [5, 6]. The former deals with
proving that the specification of level i is consistent and sat-
isfies the stated critical requirements, while the latter deals
with proving that the specification of level i+1 is consistent
with the specification of level i. Two or more ASTRAL
system specifications can also be composed into a single
specification of a combined system [4]. A proof system that
generates the necessary proof obligations for the combined
system was also developed.

Again, because I wanted the system to be available to
real developers, I developed a software environment to sup-
port the construction and use of ASTRAL formal specifica-
tions [35]. This software development environment can be
used to specify, design, and verify complex real-time soft-
ware systems.

We also implemented a model checker for ASTRAL,
which was integrated into the software development envi-
ronment. It allows a user to test formal specifications writ-
ten in the ASTRAL formal language [7]. This enables sys-
tem developers to find problems early in the software devel-
opment life cycle before they are too costly to fix.

Result: Technique, Tool

Lesson learned: Build on previous projects.

2.9. Intrusion Detection

2.9.1 State Transition Analysis technique

In the early 1990s, I and my students developed a new ap-
proach to modeling computer penetrations, called the State
Transition Analysis Technique (STAT) [40]. The first im-
plementation of an intrusion detection system based on the
STAT approach was built for the SunOS 4.1.1 operating sys-
tem [21]. This system was later ported to Solaris and Win-
dows NT. In the late nineties we extended the State Tran-
sition Analysis Technique so that it could detect network-
based attacks [43, 44]. This system is called NetSTAT.

After developing a number of intrusion detection sys-
tems for various platforms and domains, we decided to
concentrate on developing a framework for constructing a
family of intrusion detection systems [47]. The framework
is comprised of an extensible state/transition-based attack
description language (STATL) that allows one to describe
computer penetrations as sequences of actions that an at-
tacker performs to compromise a computer system, a core
model that implements the STATL semantics, and a com-
munication and control infrastructure for controlling a net-
work of sensors.

A STATL description of an attack scenario can be used
by an intrusion detection system to analyze a stream of
events and detect possible ongoing intrusions. Since intru-
sion detection is performed in different domains (i.e., the

network or the hosts) and in different operating environ-
ments (e.g., Linux, Solaris, or Windows NT) it is important
to have an extensible language that can be easily tailored
to different target environments. STATL defines domain-
independent features of attack scenarios and provides con-
structs for extending the language to describe attacks in par-
ticular domains and environments. The STATL language
has been successfully used in describing network-based,
host-based and application-based attacks, and it has been
tailored to very different environments, e.g., Sun Microsys-
tems’ Solaris and Microsoft’s Windows NT. The details of
the STATL syntax and semantics can be found in [13].

An implementation of the runtime support for the STATL
language has also been developed, and a family of intru-
sion detection systems based on STATL has been imple-
mented [46, 42]. These systems vary from a network-based
intrusion detection system, to host-based and application-
based systems, to alert correlators. Tools in the family
have been used in a number of DARPA-sponsored intru-
sion detection evaluation efforts, and they have always de-
livered impressive results. These results demonstrated that
by using the STAT framework it is possible to develop
intrusion detection systems with reduced development ef-
fort, with respect to ad hoc approaches. In addition, the
framework-based approach is advantageous in terms of the
increased reuse that results from using a component-based
architecture [47]. The STAT core code, as well as the
extensions for various host-based and network-based sys-
tems, is available at the Computer Security Group web page
(www.cs.ucsb.edu/~seclab/). This code base is approxi-
mately 300,000 lines of code. By making these systems
widely available, other researchers and practitioners can
easily experiment and gain first-hand experience with their
capabilities.

2.9.2 MetaSTAT

Intrusion detection relies on the information provided by a
number of sensors deployed throughout the monitored net-
work infrastructure. Sensors provide information at differ-
ent abstraction levels and with different semantics. In ad-
dition, sensors range from lightweight probes and simple
log parsers to complex software artifacts that perform so-
phisticated analysis. Managing a configuration of hetero-
geneous sensors can be a very time-consuming task. Man-
agement tasks include planning, deployment, initial config-
uration, and run-time modifications. To support the fine-
grained configuration of STAT-based sensors, we developed
an infrastructure called MetaSTAT, which provides a net-
work security officer with the capability to perform sensor
configuration remotely [25]. MetaSTAT also supports the
explicit modeling of the dependencies among the modules
composing a sensor so that it is possible to automatically



identify the steps that are necessary to perform a reconfigu-
ration of the deployed sensing infrastructure. This provides
a level of dynamic configurability that is superior to any
other existing system.

The result of applying the STAT/MetaSTAT approach is
a “web of sensors”’, composed of distributed intrusion detec-
tion systems integrated by means of a communication and
control infrastructure [45]. The task of a web of sensors is
to provide coordinated security monitoring of very diverse
event streams in a protected network. Multiple webs of sen-
sors can be organized either hierarchically or in a peer-to-
peer fashion to achieve scalability and to be able to exert
control over a large-scale infrastructure from a single con-
trol location [26].

2.9.3 High-Speed Networks

As networks become faster there is an emerging need for
security analysis techniques that can keep up with the in-
creased network throughput. Existing network-based intru-
sion detection sensors can barely keep up with bandwidths
of a few hundred Mbps. Analysis tools that can deal with
higher throughput are unable to maintain state between dif-
ferent steps of an attack or they are limited to the analysis
of packet headers. The Computer Security Group at UCSB
also addressed the problems of performing intrusion detec-
tion on high-speed networks. We used a partitioning ap-
proach to network security analysis that supports in-depth,
stateful intrusion detection on high-speed links. The ap-
proach is centered around a slicing mechanism that divides
the overall network traffic into subsets of manageable size.
The traffic partitioning is done so that a single slice con-
tains all the evidence necessary to detect a specific attack,
making sensor-to-sensor interactions unnecessary. The de-
tails of the approach and an experimental evaluation of its
effectiveness can be found in [36].

Result: Technique, Tools

Lesson learned: You should work on problems that are
interesting to you, whether they are funded or not. If you do
a good job, you will eventually be funded.

After the second or third "one of” consider using a soft-
ware family approach.

2.10. Red Teaming

As more applications are distributed and network access
becomes the norm, new security problems arise. During the
Christmas break of 1996, I had a visitor from Italy who was
coming for 6 weeks. So that we could get the most out of
his visit, I asked what areas he was most interested in. One
of the areas was web applications. Since I knew very little
about web applications at the time, I suggested that we look
at what had been done in the area of web security.

During this six week period we discovered several fa-
tal flaws in the then current web browser technologies [39].
One of these flaws allowed complete access to all data en-
tered by an unsuspecting browser user. This was an example
of spyware, before the term had been coined. We discov-
ered this flaw two days after Netscape released the browser,
and Netscape came up with a new release within two weeks
of being notified of the flaw. Netscape named this flaw the
“Santa Barbara Privacy Bug.”

Motivated by the flaws that we discovered in web appli-
cations, one of my PhD students, André dos Santos, and
I developed an approach, based on smart cards, that al-
lows one to interact with otherwise unsafe applications in
a secure way. The general approach is called Safe Areas
of Computation (SAC), and it was first presented at AC-
SAC99 [10].

The initial WWW work also resulted in getting to evalu-
ate the security of an online banking application for a large
international bank. Starting from a single legitimate ac-
count and unprivileged Internet access to the bank’s site we
demonstrated how it was possible to compromise the se-
curity of many accounts and transfer funds to our own ac-
count [9]. We also showed how by using the SAC approach
most of the compromises with the bank application could
be avoided.

My most recent red team experience was this past sum-
mer when the California Secretary of State asked our re-
search group to be part of the Top-to-Bottom Review of
California’s electronic voting systems. The Computer Se-
curity Group knew very little about voting systems, but we
knew a lot about red teaming.

The group performed a series of security tests of both
the hardware and the software that are part of the Sequoia
electronic voting system to identify possible security prob-
lems that could lead to a compromise. In this case, a “com-
promise” was defined as “tampering or an error that could
cause incorrect recording, tabulation, tallying or reporting
of votes or that could alter critical election data such as elec-
tion definition or system audit data.”

The team was able to expose a number of serious security
issues. We were able to bypass both the physical and the
software security protections of the Sequoia system, and we
demonstrated how these vulnerabilities could be exploited
by a determined attacker to modify (or invalidate) the results
of an election.

The complete red team report, as well as the reports for
the Diebold and Hart systems, which were evaluated by
other teams, is available online at
http://www.sos.ca.gov/elections/elections_vsr.htm.

Result: Technique, Product

Lesson learned: By working on real systems, you can
have a large impact.

Be a good citizen.



Don’t be afraid to move into new areas.
Don’t overlook the obvious.
Being the attacker is a lot of fun.

3. Future Security Challenges

In the early days of computing, when standalone systems
were used by one user at a time, computer security consisted
primarily of physical security. That is, the computer and
its peripherals were locked in a secure area with a guard
at the door that checked each user’s identification before
allowing them to enter the room. Unfortunately, as com-
puters and computer applications got more complex and
thousands, and even millions, of systems were connected
to one another, protecting these networked systems became
a daunting task.

Most security experts (ask the person sitting next to you)
already agree that, given all of the desirable user features,
such as network connectivity and user friendliness, the goal
of having a system that is “completely secure” (whatever
that means) will never be achieved. But cheer up. Things
are just going to get worse. I think two of the biggest prob-
lems that we security researchers have to face our privacy
and ubiquitous computing.

The incredible growth in the use of the Internet has re-
sulted in an increase in the number of privacy vulnerabil-
ities. As users are given online access to their bank ac-
counts, health records, and shopping portals, the demand for
more user friendly interfaces has increased. To make these
systems more user friendly, personal information, such as
shopping preferences, and even credit card and social se-
curity numbers, are collected and stored on the systems.
The problem is that the same information that is used to
make access more efficient and user friendly is also acces-
sible to the attackers. As a result, the number of attacks
aimed at accessing personal data has also increased dramat-
ically. These attacks range from the release of embarrassing
personal information to identity theft and personal financial
losses. Controlling the distribution and use of personal in-
formation is already a big problem, and it is only going to
get worse. The controls have to allow each person to decide
how they want their data to be handled and distributed.

Now let’s consider ubiquitous or pervasive computing.
The integration of computation into the environment, rather
than having computers as distinct objects, opens up a whole
new class of security and privacy problems. The selling
point of the promoters of ubiquitous computing is that em-
bedding computation into the environment will enable peo-
ple to move around and interact with computers more nat-
urally than they currently do. Imagine trying to be security
conscious when you do not even know that you are currently
interacting with one (or many) of these embedded systems.

One of the goals of the pervasive computing community

is to enable devices to sense changes in the environment and
to automatically adapt and respond based on these changes
and based on the user’s needs and preferences. Do you trust
the systems you are interacting with (possibly without be-
ing aware of the interaction) to know what your preferences
are? Also, who controls the dissemination of your prefer-
ence information? How can you assure the privacy of your
personal information (e.g., preferences) if you are not aware
of who or what holds this information? There is no doubt
that the increased complexity of these pervasive systems
will make the task of assuring the security of these systems
orders of magnitude more than what we currently need for
today’s systems.

So what are we going to do? As I said in the previous
subsection, Don’t be afraid to move into new areas. 1 view
these problems as fun new areas to start working in. Want
to join me?

4. Conclusions

I would like to reiterate that it is important to ground
your research in practice. The goal of every research project
should be that it produces something that others can use.
To test the practicality of your research, ask the question
”Would a practitioner find my technique, tool, or product
useful?”.

In this paper I have summarized some of the many re-
search projects that I have worked on and pointed out what
I thought were some lessons learned. Now, after selling you
on the idea of grounding your research in practice, I feel that
I need to come clean. That is, not all research that is use-
ful ends up with an identifiable technique, tool, or product.
This is particularly true of some foundational research, but
it is also true of more practical projects, such as the Verifica-
tion Assessment Study reported in section2.5. Furthermore,
it is often the case that the use is not discovered until years
later. This does not mean, however, that you should not
ask the question of practitioner relevance when choosing a
research direction.

I would like to make another point, particularly for the
younger faculty and students in the audience. Do not let
the available research dollars drive your choice of research
directions. Good research is not always funded. When I
first started the STAT approach, it was not funded. In fact,
it was unfunded for about six years. Also, don’t confuse
unfunded and not fundable; I eventually received more than
seven million dollars in funding for this work.

I also need to mention that the term product” as used
in this paper does not mean something that is ready to be
sold on the open market. One of the research projects that
I did not discuss in this paper is our work on web appli-
cation firewalls. Over the past year or two we have been
commercializing this research through a startup. A lesson



that I have learned from this exercise is that productizing a
research tool is a long and difficult process. It is, however,
quite a rewarding learning experience and a lot of fun.

Finally, I would like to thank the many colleagues that I
have worked with on the projects presented in this paper and
on other projects that I did not include. In particular, I would
like to acknowledge all of the current and past members
of the Computer Security Group (formerly known as the
Reliable Software Group) at UCSB.
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