
Michael Howard
Principal Security Program Manager

Microsoft Corp.
mikehow@microsoft.com

� Microsoft employee for >15 years

� Always in security

� Editor for IEEE Security & Privacy

� A pragmatist!

� Core Design Assumptions

� Security Development (SDL) Process
security contributions

� Isolation

� Service Hardening

� Memory defenses

� Code is never perfect

� Designs are never perfect

� Remember, security is “Man vs. Man”
� Security is a never-ending arms race

� You can never be “done” with security

� Individual protections may fail
� Windows Vista includes numerous, layered defenses

� All enabled by default

� Each protection raises the bar

� But, we must protect customers

Prescriptive
Guidance

External
Review

Mandatory
Education

“Quality
Gates”

Central
analysis

Threat
analysis

Software Security Science

� Weak Crypto banned in new code

� No use of MD4, MD5 or SHA1.

� No use of RC4.

� No symmetric keys smaller than 128 bits allowed.

� No RSA keys smaller than 1024 bits allowed.

� Threat Modeling

� Training and tools provided to engineering teams

� 1,400+ Threat models developed for Windows Vista

� Security team reviewed models

� Mandatory Use of Compiler Security Options
� /GS flag (runtime stack BO detection)
� /SAFESEH (runtime exception checking)
� /NXCOMPAT (NX support)
� /DYNAMICBASE (ASLR support)
� /ROBUST switch for MIDL compiler

� Safe Libraries Developed
� 120+ Banned functions
� IntSafe (C safe integer arithmetic library)
� SafeInt (C++ safe integer arithmetic template class)
� Secure CRT (C runtime replacements for strcpy, strncpy etc)
� StrSafe (C runtime replacements for strcpy, strncpy etc)

strcpy, strcpyA, strcpyW, wcscpy, _tcscpy, _mbscpy, StrCpy, StrCpyA, StrCpyW, lstrcpy, lstrcpyA, lstrcpyW, _tccpy, _mbccpy strcat, strcatA, strcatW, wcscat, _tcscat, _mbscat, StrCat,
StrCatA, StrCatW, lstrcat, lstrcatA, lstrcatW, StrCatBuff, StrCatBuffA, StrCatBuffW, StrCatChainW, _tccat, _mbccat, strncpy, wcsncpy, _tcsncpy, _mbsncpy, _mbsnbcpy, StrCpyN,
StrCpyNA, StrCpyNW, StrNCpy, strcpynA, StrNCpyA, StrNCpyW, lstrcpyn, lstrcpynA, lstrcpynW strncat, wcsncat, _tcsncat, _mbsncat, _mbsnbcat, StrCatN, StrCatNA, StrCatNW,
StrNCat, StrNCatA, StrNCatW, lstrncat, lstrcatnA, lstrcatnW, lstrcatn CharToOem, CharToOemA, CharToOemW, OemToChar, OemToCharA, OemToCharW, CharToOemBuffA,
CharToOemBuffW alloca, _alloca wnsprintf, wnsprintfA, wnsprintfW, sprintfW, sprintfA, wsprintf, wsprintfW, wsprintfA, sprintf, swprintf, _stprintf, _snwprintf, _snprintf, _sntprintf,
wvsprintf, wvsprintfA, wvsprintfW, vsprintf, _vstprintf, vswprintf, _vsnprintf, _vsnwprintf, _vsntprintf, wvnsprintf, wvnsprintfA, wvnsprintfW strtok, _tcstok, wcstok, _mbstok
makepath, _tmakepath, _makepath, _wmakepath, _splitpath, _tsplitpath, _wsplitpath scanf, wscanf, _tscanf, sscanf, swscanf, _stscanf, snscanf, snwscanf, _sntscanf _itoa, _itow, _i64toa,
_i64tow, _ui64toa, _ui64tot, _ui64tow, _ultoa, _ultot, _ultow gets, _getts, _gettws IsBadWritePtr, IsBadHugeWritePtr, IsBadReadPtr, IsBadHugeReadPtr, IsBadCodePtr, IsBadStringPtr
strlen, wcslen, _mbslen, _mbstrlen, StrLen, lstrlen

� TOOLS ARE NOT A PANACEA

� PREfast – Static code analysis (used by /analyze)

� FxCop – Static analysis of managed code and
assemblies

� Standard Annotation Language (SAL)
� Majority of C Runtime library has been annotated

� Windows SDK functions have been annotated

� Tools can only find “so much” without more
contextual information

� SAL helps bridge the gap by providing interface
contract information to the tools

� SAL leads to dramatically improved static analysis
� More bugs

� Less noise

� The process of adding annotations can find bugs!

� The concept is not new: think IDL

� Included in Visual Studio 2005

void FillString(

char* buf,

size_t cchBuf,

char ch) {

for (size_t i = 0; i < cchBuf; i++) {

buf[i] = ch;

}

}

Joined at
the hip

void FillString(

__out_bcount(cchBuf) char* buf,

size_t cchBuf,

char ch) {

for (size_t i = 0; i < cchBuf; i++) {

buf[i] = ch;

}

}

� Identify and fuzz all file formats consumed by the operating system

� Minimum 100,000 malformed files per parser

� Fuzz many networking protocols, including RPC

� Internal Penetration Testing

� External Penetration testing (thanks to):

� Code Blau Security Concepts

� Cybertrust

� iSec Partners

� IOActive

� Matasano

� Password Consultancy

� Net-square

� NGS

� n.runs

� Security Innovation

� MS06-078 Windows Media Player
� Banned API removal (wcsncat)

� MS06-069 Flash 6
� Installed by default in Windows XP, not shipped with Windows
Vista

� MS06-066 NetWare Client
� Installed by default in prior OS’s, removed in Windows Vista

� MS06-055 VML
� Found through fuzzing

� MS06-050 Windows Hyperlink Object Library
� Found and fixed because of SAL

� MS07-004 VML
� Integer overflow calling ::new caught by compiled code

Security Bulletins that do not affect Windows VistaSecurity Bulletins that do not affect Windows Vista

� Analysis of 63 buffer-related security bugs that
affect Windows XP, Windows Server 2003 or
Windows 2000
� but not Windows Vista

� 82% removed through SDL process
� 27 (43%) found through use of SAL
� 26 (41%) removed through banned API removal

Interesting figuresInteresting figures

SAL found
27

API removal
26

Prescriptive
Guidance

External
Review

Mandatory
Education

“Quality
Gates”

Central
analysis

Threat
analysis

Software Security Science

� UAC: Users are no longer admins by default

� Even an admin is not an admin

� Integrity levels help contain damage

� IE7 runs in low integrity (by default)

� Protected Mode

� Most parts of the operating system are medium
integrity

� Restricts “Write-Up”

� Helps defend integrity of the operating system

� Many existing services moved out of SYSTEM

� Describe the privileges you need

� Per-service identity (SID)
� Protect objects for just that service

� S-1-5-80-xxxx

� Stricter service restart policy

� Restrict network behavior
� Eg: foo.exe can only open port TCP/123 inbound

� |Action=Allow|Dir=In|LPORT=123|Protocol=17|App=
%SystemRoot%\foo.exe

� Stack BO detection (aka /GS, enabled by
default)

� Detects many stack-based overruns at runtime

� Re-arranges the stack so buffers are in higher
memory (helps protect variables)

� Moves various arguments to lower memory

� Exception handler protection (aka /SAFESEH,
enabled by default)

� Exception addresses are verified at runtime

� Data Execution
Prevention (aka
NX/XD, enabled
by default*)

� Harder to execute
data

� In Windows Vista,
DEP cannot be
disabled once turned
on for a process

*Most CPUs today support DEP, but *Most CPUs today support DEP, but
make sure itmake sure it’’s enabled in the BIOSs enabled in the BIOS

� By default IE7 does not
enable DEP/NX :(
� Because too many
controls break

� Many controls use just-in-
time compilation

� They try to run data

� Fix is to use VirtualProtect(…,
PAGE_EXECUTE_READ,…)

� We will enable DEP/NX in a
future release of IE

� Heap defenses (all enabled by default)

� Lookasides gone

� Arrays of free lists gone

� Early detection of errors due to block header
integrity check

� ENTRY->Flink->Blink == ENTRY->Blink->Flink ==
ENTRY

� Heap terminate on corruption

� Integer overflow calling operator::new
automatically detected at runtime (by default)

� Image randomization (ASLR)
� System images are loaded randomly into 1 of 256 ‘slots’

� Changes on each boot

� To be effective ASLR requires DEP

� Enabled by default

� Link with /DYNAMICBASE for non-system images

� Stack is randomized for each new thread
(by default)

� Heap is randomized (by default)

� Long-lived pointers are encoded and decoded
� A successful pointer overwrite must survive the decoding
process (XOR with a random number)

� The coding vulnerability was in the code

� The attacker had to:
� Get passed the firewall

� Bypass /GS

� Bypass SafeSEH

� Bypass NX

� Bypass ASLR

� Bypass stack randomization

� Bypass service hardening

� And the attacker has only two attempts
� Because of service restart policy

� Security is “Man vs. Man”

� We must continue to innovate

� We must continue to learn more about
attackers
� And how to thwart them

� We perform root-cause analysis of each
security bug

� We analyze bugs from around the industry

� We work closely with security researchers

� Feeds back into the SDL twice a year

� Process
� Evaluate the SDL (it works!)

� Build threat models

� Utilize all available tools
(eg; compiler, /analyze, SAL
etc)

� Perform fuzz testing

� Hire expert pentest help

� Engineering
� Remove banned APIs

� Compile with /GS

� Link with /NXCOMPAT,
/SAFESEH and
/DYNAMICBASE

