
The Evolution of System-call Monitoring

Stephanie Forrest
Steven Hofmeyr
Anil Somayaji

December, 2008

Outline of Talk

• A sense of self for Unix processes (Review)

• Emphasize method rather than results

• Evolutionary innovations

• General principles and lessons learned

Background
	 The immunological perspective

• The problem the immune system solves
for the body is (almost) the same as the
problem we want computer security to
solve for our computers:

• Detecting unauthorized use of
computers, computer viruses, etc.

• Choosing and mounting an effective
response.

• Sophisticated IDS and response

• Detect and stop attacks
automatically in real time

• Focus on system call monitoring

The biological perspective led to a set of
	 general design principles

• Autonomy

• On-line, real-time automated response

• Simple and generic

• Anomaly detection, focus on executing code

• Adaptable to changing programs and environments

• Diversity

• Of the defense mechanism and the host itself

A Sense of Self for Unix Processes (IEEE S&P, 1996)

• Collect system-call data for
normally operating programs
(time series)

• Build a profile of normal
behavior based on these data

• Observe more (possibly
anomalous) behavior

• Treat discrepancies as
anomalies

• Sana Security Primary
Response

Building the profile

• n-gram representation

• One profile per executable

• Store in fixed size array

• Profiles

• 1 training array

• 1 testing array

• Heuristics

Call Position 1 Position 2 Position 3

open read,getrlimit mmap mmap, close

read mmap mmap open

mmap mmap, open, close open,getrlimit getrlimit,mmap

getrlimit mmap close

close

open, read, mmap, mmap, open, getrlimit, mmap close

open, read, mmap, mmap, open, open, getrlimit, mmap

Anomalies:
 open, open
 open, *, getrlimit

Measuring Anomalies

5

4

3

2

1

0 .

00110011000001111100000000001

N
um

be
r o

f M
is

se
s

in
 L

oc
al

ity
 F

ra
m

e

Position in Tracelocality frame

Example: syslogd intrusion

Automated Response

• Intrusion detection incurs a cost of persistent false positives

• Perpetual novelty

• Legitimate normal behavior evolves over time

• Inherent ambiguity between normal and intrusive

• Automated response often ignored because false-positives are expensive

• Must reduce systems administration burden (rather than increasing it)

• Must be tolerant of some false-positives

Graduated response

• Process Homeostasis (pH):

• Computer autonomously monitors its own activities

• Continually makes small corrections to maintain itself in a “normal” state

• Anomalous sequences trigger system-call delays

• Exponentially increasing delay

• Small delays imperceptible to users

• Long delays trigger timeout mechanisms at network and application level

• HP’s ProCurve network Immunity Manager

process Homeostasis (pH)
	 Somayaji and Forrest Usenix, 2000

One Anomaly

System Calls

Many Anomalies

Locality Frame

D
el

ay

Stopping attacks in real-time

Note: Other ssh and sendmail processes unaffected

Linux capabilities bug (via sendmail)ssh Trojan program (buffer overflow)

Mimicry Attacks

• Sequences of system calls that exploit a
vulnerability but appear normal

• Relies on successful code injection

• Code bloat from nullified calls

• Mimicry has to persist as long as the
attacker exploits the process

• Diversity of normal profiles is a potential
barrier

• Also, non control flow attacks
Wagner and Dean CCS 2002

Evolutionary Innovations
	 Many authors (see paper)

• Data modeling methods

• Extensions

• Data flow (sys call arguments)

• Execution context (PC)

• Static analysis

• Other observables

• Library calls, JVM, HTTP
requests, ...

!"#$%&'()*)$'+(,"--($&",'.

!!!"#$%&'"#(&)*"#++)%"#++)%"#$%&'"#,&-(./+/-"#0.$1&"#!!!

!"#$%&'

())*%+,%-./%0$'

/0$&",$()'1%'2,').

++)%"#++)%"#$%&'"#,&-(./+/-
++)%"#$%&'"#,&-(./+/-"#0.$1&

3"$"(456'--728

$%&'"#,&-(./+/-
++)%"#2"#,&-(./+/-

++)%"#2"#2"#,&-(./+/-
,&-(./+/-"#0.$1&
$%&'"#2"#0.$1&

++)%"#2"#2"#0.$1&

123'4.566'

++)% $%&'

,&-(./+/-0.$1&

Figure 1. Representing system call streams

source code. An important class of attacks involves inject-
ing foreign code (e.g. buffer overflows), but many other
attacks force a program to exercise existing but rarely used
code paths, and hence do not require foreign code injection.
Developing a normal profile is a typical machine learning
problem: Undergeneralization leads to false positives, and
overgeneralization leads to false negatives.

Experimentation with a wide range of programs (e.g.
sendmail, lpr, inetd, ftp, named, xlock, login,
ssh) demonstrated that these programs exhibit regular be-
havior and can be characterized by compact normal profiles
[40, 25, 14]. Figure 2 shows how normal behavior con-
verges to a fixed set of system call sequences of length 6
for lpr in a production environment—the Artificial Intelli-
gence Laboratory at the Massachusetts Institute of Technol-
ogy (MIT). The figure shows how initially there are many
new sequences, but after a while few novel sequences are
observed and the profile converges to a fixed size.

Not only can normal behavior be defined by limited sets
of sequences of system calls, but what constitutes normal
differs widely from one program to the next. For exam-
ple, a typical run of ftp differed by between 28 and 35%
(depending on the sequence length) from sendmail [14].
More importantly, different environments and usage pat-
terns resulted in dramatically different normal, even for the
identical program and operating system. For instance, the
normal profile for lpr gathered at MIT differed markedly
from the normal profile gathered at the University of New
Mexico’s Computer Science Department (UNM): only 29%
of the unique sequences in the MIT profile were also present
in the UNM profile. Later work on pH corroborated these
results in lookahead pairs, showing 1) that two program pro-
files were 20-25% similar on average (over hundreds of pro-
grams) and 2) the same programs running on three different

0 500000 1000000 1500000

Total number of sequences

0

200

400

600

800

1000

N
u

m
b

er
 o

f
u

n
iq

u
e

se
q

u
en

ce
s

Figure 2. Growth of normal database for lpr
from MIT’s Artificial Intelligence Laboratory
(reprinted from [76]).

hosts with the same OS version differed, on average, in 22-
25% of their lookahead pairs [64].

These results offered clear support for what we have
termed the “Diversity Hypothesis”: Normal code paths exe-
cuted by a running program are highly dependent on typical
usage patterns, configuration and environment, and hence
can differ widely from one installation to the next, even for
the same program and operating system. Diversity in biol-
ogy confers robustness on a population, and can do the same
for computer systems: an attack that succeeds against one
implementation could fail against another because normal is
different. Further, the attacker will not necessarily know a
priori what constitutes normal for a given implementation—
knowledge of the source code is not sufficient; also required
is knowledge of the environment and usage patterns.

3.3 Detecting attacks

The normal profile must not only be stable and com-
pact, but it must differ from behavior generated by at-
tacks. Extensive experimentation demonstrated that nor-
mal sequences of system calls differ from a wide variety
of attacks, including buffer overflows, SYN floods, config-
uration errors, race conditions, etc [14, 25, 40, 64]. This
variety shows that the method is capable not only of detect-
ing foreign code injection attacks (such as buffer overflows)
but attacks that exercise unused code paths that exist in the
program source. In contrast with methods based on static
analysis, this last point illustrates the importance of a pre-
cise definition of normal that excludes unused source code
paths.

One question of interest was determining the minimum
necessary system call length required to detect all attacks.

The biological analogy led to a set of
	 general principles

• Generic

• Universal weak methods are applicable to many problems

• Do not require specialized domain knowledge

• Coverage of a broad range of attacks, but not 100% provably secure

The biological analogy led to a set of
	 General principles

• Generic

• Adaptable

• To changes in the environment and self

• Simple learning to construct models and update over time

The biological analogy led to a set of
	 General principles

• Generic

• Adaptable

• Autonomy

• Graduated response

• Need for speed dictated simplicity

The biological analogy led to a set of
	 General principles

• Generic

• Adaptable

• Autonomy

• Diversity

• Each profile is unique, making it difficult for the attacker to predict the
profile

• Led to automated diversity project

Lessons Learned

• Designed repeatable experiments

• Open source code and data

• Comprehensible system design that focused on one hypothesis

• Careful comparison between methods is difficult

• Environments are complex and systems difficult to replicate

• Metrics emphasize breadth of coverage and corner cases

• Results depend heavily on data set choice; methods might not matter

Conclusion
	 Engineering practices based on biology

• Why do we need them?

• Evolution of the software ecosystem (software rot, malware)

• Dynamic, mobile, complex, and hostile environments

• Moore’s Law won’t rescue us

• Hallmarks

• Simple and generic

• Computationally and memory efficient

• Automatically self-tuning, distributable, diverse, and autonomous

What I’m doing now

• Autonomous security for autonomous systems (BGP), privacy enhancing
data representations (Negative Databases)

• A scaling theory for the rest of computer science

• Using GP to fix bugs in software automatically

Biological defense mechanisms
	 Applied to computation

• Immunology:

• Protect an individual (single host or a network) against network epidemics
and other forms of attack.

• Antivirus programs, intrusion-detection systems

• Sana Security Primary Response

• Autonomic responses, e.g., homeostasis:

• Tightly coupled low-level detection/response phases.

• pH and network (virus) throttling.

• HP’s Virus Throttle

Biological defense mechanisms
	 Applied to computation cont.

• Diversity:

• Genetic diversity leads to population-level robustness.

• Disrupt software monoculture using randomization and/or evolution.

• Microsoft Vista Address Space Randomization

• Epidemiology:

• Network-based control of viruses/worms.

• Focus on network topology (the epidemic threshold).

• Survivability and attack resistance (PGBGP---work in progress)

Other biological defense mechanisms
	 Still to be tapped

• The innate immune system

• Ecological interactions and evolutionary biology

• Malware ecology: Malware interactions, indicator species, etc.

• Automated bug repair using evolutionary methods

• Optimal levels of defense in depth

• Intracellular defenses and repair mechanisms

• RNAi

• Restriction enzymes

Significance

• Early successful example of anomaly intrusion detection

• On-line, real-time, adaptive, automated response

• Stops attacks in real-time

• Diversity of protection

• Sana Security started by former UNM student, Steven Hofmeyr

S. Forrest et al. “A sense of self for Unix processes” IEEE S&P (1996)

A. Somayaji and S. Forrest ``Automated response using system-call delays.'' Usenix (2000)

A. Somayaji ``Operating system stability and security through process homeostasis’'
PhD Dissertation (2002)

Mantra	

• The only code that can hurt you is code that actually runs

• Keep it simple stupid (KISS)

• Never let the geeks forget there is a bigger picture

• Nothing says it won’t work

