
Java Security:
a Ten-Year Retrospective

Li Gong
Mozilla Online Ltd.
lgong@mozilla.com

www.mozillaonline.com
December 10, 2009

mailto:lgong@mozilla.com
http://www.mozillaonline.com/

300~ Pages of Meeting Notes

1000~ Meetings in 30 months

Why Security Technologies Seldom
Make Into Actual Mainstream

Products and Systems???

• Can count notable successes on one hand

– Firewall

– SSL/TLS

– One-time password

– Maybe anti-virus for Windows

The Answer Is:

• It is a social process, not just a technology
issue

• The EKE story (Bellovin/Merritt, IEEE S&P,
1992)

• “Reducing Risks from Poorly Chosen Keys”
(Lomas/Gong/Needham/Saltzer, ACM SOSP
1989)

• Plus luck – at the right place and the right
time; be ready to take the single available shot

Major Distractions Circa 1996/7

• Export control of crypto packages
– Key escrow/key recovery, RSA/Bsafe/Cylink/others,

CDSA, MS CAPI

– Church of Cryptology

• Constant onslaught of security bugs
– The Friday fire drills

– Microsoft is a Java licensee; but is it a good partner?

• Where is Java security headed
– Is it just a component of the browser? More

specifically the Netscape browser?

Minor Distractions

• Protect against decompilation of Java bytecode
– Code obfuscation
– Encrypted bytecode

• Control of resource consumption by applets
• Java on a smartcard
• Java as e-commerce platform (Java Wallet)
• JavaOS (Java Station)

– Security needs for a standalone OS?

• Sun company wide security architecture and
strategy?

Four Major Concerns for JDK 1.2

• Usability
– Suitable for a wide variety of applications

• Simplicity
– Easy to understand and analyze

• Adequacy
– Enough features before the next release

• Adaptability
– Do not over prescribe

– Can evolve with ease

JDK 1.2 Security Feature List
(12/11/1996)

• Project code named Gibraltar
• Features

– Authentication
– Delegation
– Fine-grained access control
– Policy management
– Audit
– Secret sharing
– Key generation
– Storage of private keys (e.g., passwords)

• Alpha (05/1997), FCS (09/1997)

Another Java security workshop

• 6/17/1997

• MSFT, Netscape, IBM, Lotus, DEC, Marimba,
W3C, AT&T, Cylink, HP, Intel

12-Month Battle with Netscape

• The three battles

– JFC vs Netscape’s IFC (combined into Swing)

– Hotspot vs Netscape’s proposed Java VM

– Java security vs Netscape Java security extensions

• IBM as arbitrator

– Arbitration resolution meeting 10/15/2007

– Don Neal overall IBM taskforce lead (Bob Blakely
took over the lead 3 months later)

More “Battles”

• Customers with special requests

– Financial (Chase, Citicorp, Amex, etc.)

– US government agencies

– Big corps (IBM, Lotus, Novell, etc.)

– Startups in new fields (@Home, etc.)

– Sun internal (pJava, eJava, enterprise groups)

• Security audit of JDK 1.2

Java Security Advisory Council (12/1997)

• Java security vs underlying OS security
– Dependence on, exposure of, API access to, interoperable

with underlying OS security features

• Theory and Practice
– How much can we apply existing theories and tools in

semantics, analysis, certification, verification, assurance

• Secure distributed computing needs
– Authentication, authorization, secure transaction, fault

tolerance, agents and mobile computing

• Real-world impact
– Users, developers, sys adms, educators, public opinion

Technical Example 1

• Implementation least privilege at the system
level in JDK 1.2 turned out to be easier and
more robust than a “bolted-on” binary
sandbox model in JDK 1.0/1.1

Technical Example 2

• Public static native void begingPrivileged()

• Public static native void endPrivileged()

• Try {

AccessController.beginPrivileged();

System.loadLibrary(“xyz”);

} finally {

AccessController.endPrivileged();

}

Example 2 (Cont.)

• Privileged System.loadLibrary(“xyz”);

• somemethod() {

AccessController.doPrivileged(new PrivilegedAction() {
public Object run() {

System.loadLibrary(“xyz");

return null;

}

});

}

Technical Example 3

• GuardedObject

– An object containing a resource (e.g., a file) and a
specific guard (a permission)

– The resource is accessible if the permission is allowed

• Access permission is checked at the point of
resource consumption, ensuring the right check is
done in the right context

– Can pass objects around freely

– Can prepare resources before actual requests

Observations – The Good

• Java security has matured
– From “what it is” to “how to utilize the features”

– Did too little, too much, or just right?

• Raised the bar for everyone else
– Anyone designing a new language/platform must

consider type safety, systems security, least
privilege, etc.

• Impacted thousands of programmers on their
security awareness

Observations – The Bad

• Those companies who can afford the time and
effort to improve security do not feel incented
to spend the resources

• Those who want to differentiate from the
dominate players cannot afford the time and
effort

• When rarely a good security platform
emerges, industry competition would not
allow it to be adopted across the board

Observations – The Bad (cont.)

• Many/any extensible systems (e.g., browser
add-ons, iPhone apps) need the same sort of
protection/security infrastructure, but they
tend to be built on different technology
platforms, so reuse is difficult or impossible

Observations – The Ugly

• A new thing (a toy widget, scripting language,
etc.) starts nice and small, with limited usage
scope and no security considerations

• It gains good traction

• The feature set keeps expanding

• Soon the “small toy” resembles a full system
or programming platform, except without
adequate security support

“Never Forget Class Struggle!”

• Email me at lgong@mozilla.com

