Java Security:
a Ten-Year Retrospective

Li Gong
Mozilla Online Ltd.
lgong@mozilla.com
www.mozillaonline.com
December 10, 2009



mailto:lgong@mozilla.com
http://www.mozillaonline.com/

300~ Pages of Meeting Notes

1000~ Meetings in 30 months



Why Security Technologies Seldom
Make Into Actual Mainstream
Products and Systems???

e Can count notable successes on one hand
— Firewall
— SSL/TLS
— One-time password
— Maybe anti-virus for Windows



The Answer Is:

It is a social process, not just a technology
Issue

The EKE story (Bellovin/Merritt, IEEE S&P,
1992)

“Reducing Risks from Poorly Chosen Keys”
(Lomas/Gong/Needham/Saltzer, ACM SOSP
1989)

Plus luck — at the right place and the right
time; be ready to take the single available shot



Major Distractions Circa 1996/7

* Export control of crypto packages

— Key escrow/key recovery, RSA/Bsafe/Cylink/others,
CDSA, MS CAPI

— Church of Cryptology

e Constant onslaught of security bugs

— The Friday fire drills

— Microsoft is a Java licensee; but is it a good partner?
* Where is Java security headed

— |Is it just a component of the browser? More
specifically the Netscape browser?



Minor Distractions

Protect against decompilation of Java bytecode
— Code obfuscation
— Encrypted bytecode

Control of resource consumption by applets
Java on a smartcard
Java as e-commerce platform (Java Wallet)

JavaOS (Java Station)
— Security needs for a standalone OS?

Sun company wide security architecture and
strategy?




Four Major Concerns for JDK 1.2

Usability

— Suitable for a wide variety of applications
Simplicity

— Easy to understand and analyze
Adequacy

— Enough features before the next release
Adaptability

— Do not over prescribe

— Can evolve with ease



JDK 1.2 Security Feature List
(12/11/1996)

* Project code named Gibraltar

* Features
— Authentication
— Delegation
— Fine-grained access control
— Policy management
— Audit
— Secret sharing
— Key generation
— Storage of private keys (e.g., passwords)

. Alpha (05/1997), FCS (09/1997)



Another Java security workshop

* 6/17/1997

 MSFT, Netscape, IBM, Lotus, DEC, Marimba,
W3C, AT&T, Cylink, HP, Intel



12-Month Battle with Netscape

* The three battles
— JFC vs Netscape’s IFC (combined into Swing)
— Hotspot vs Netscape’s proposed Java VM
— Java security vs Netscape Java security extensions

 IBM as arbitrator
— Arbitration resolution meeting 10/15/2007

— Don Neal overall IBM taskforce lead (Bob Blakely
took over the lead 3 months later)



More “Battles”

* Customers with special requests
— Financial (Chase, Citicorp, Amex, etc.)
— US government agencies
— Big corps (IBM, Lotus, Novell, etc.)
— Startups in new fields (@Home, etc.)
— Sun internal (pJava, eJava, enterprise groups)

e Security audit of JDK 1.2



Java Security Advisory Council (12/1997)

Java security vs underlying OS security

— Dependence on, exposure of, APl access to, interoperable
with underlying OS security features

Theory and Practice

— How much can we apply existing theories and tools in
semantics, analysis, certification, verification, assurance

Secure distributed computing needs

— Authentication, authorization, secure transaction, fault
tolerance, agents and mobile computing

Real-world impact
— Users, developers, sys adms, educators, public opinion



Technical Example 1

* Implementation least privilege at the system
level in JDK 1.2 turned out to be easier and
more robust than a “bolted-on” binary
sandbox model in JDK 1.0/1.1



Technical Example 2

* Public static native void begingPrivileged()
* Public static native void endPrivileged()
* Try{
AccessController.beginPrivileged();
System.loadLibrary(“xyz”);

} finally {
AccessController.endPrivileged();



Example 2 (Cont.)
* Privileged System.loadLibrary(“xyz”);

 somemethod() {

AccessController.doPrivileged(new PrivilegedAction() {
public Object run() {

System.loadLibrary(“xyz");
return null;

1);



Technical Example 3

* GuardedObject

— An object containing a resource (e.g., a file) and a
specific guard (a permission)

— The resource is accessible if the permission is allowed

* Access permission is checked at the point of
resource consumption, ensuring the right check is
done in the right context
— Can pass objects around freely
— Can prepare resources before actual requests



Observations — The Good

e Java security has matured
— From “what it is” to “how to utilize the features”
— Did too little, too much, or just right?

* Raised the bar for everyone else

— Anyone designing a new language/platform must
consider type safety, systems security, least
privilege, etc.

* Impacted thousands of programmers on their
security awareness



Observations — The Bad

* Those companies who can afford the time and
effort to improve security do not feel incented
to spend the resources

e Those who want to differentiate from the

dominate players cannot afford the time and
effort

 When rarely a good security platform
emerges, industry competition would not
allow it to be adopted across the board



Observations — The Bad (cont.)

* Many/any extensible systems (e.g., browser
add-ons, iPhone apps) need the same sort of
protection/security infrastructure, but they
tend to be built on different technology
platforms, so reuse is difficult or impossible



Observations — The Ugly

A new thing (a toy widget, scripting language,
etc.) starts nice and small, with limited usage
scope and no security considerations

It gains good traction

The feature set keeps expanding

Soon the “small toy” resembles a full system
or programming platform, except without
adequate security support



“Never Forget Class Struggle!”

* Email me at Igong@mozilla.com




