
Determining the Fundamental
Basis of Software Vulnerabilities

Larry Wagoner

NSA

Agenda

• Background

– Analogous background

– Matt Bishop work

– CWEs

– Tool reporting of CWEs

– KDM Analytics

• Determining the fundamental basis

Elements of the world

• Classical elements in Babylonia (~17 B.C.): Sea,
Earth, Fire, Sky and Wind

• Greek Classical Elements:

– Four terrestrial elements: Earth, Water, Air and
Fire

– Sometimes a fifth element, Aether, was added

• Aether is “pure, fresh air” or “clear sky”

– Persisted throughout the middle ages

• Now viewed as a simplistic view of the world

More modern view

• Basic building blocks of matter

– Atoms

• Protons, neutrons, electrons

– Elementary particles

• Quarks, leptons, bosons

Periodic Table of Chemical Elements
Presented by the number of protons in

the atom’s nucleus

WHAT ARE THE ELEMENTARY
BUILDING BLOCKS OF SOFTWARE

VULNERABILITIES?

“Vulnerabilities Analysis”

• M. Bishop, “Vulnerabilities Analysis,” Proceedings of the
Second International Symposium on Recent Advances in
Intrusion Detection pp. 125–136 (Sep. 1999).

• Goal was to develop a classification scheme for vulnerabilities

• Scheme is deterministic
– Each class has exactly one property

– “yes” or “no” answer for membership

• Classification based on the code, environment or other
technical details
– Social cause is not a valid class

• Seeking consistent classification

Data and Stack Buffer Overflow
Breakdown (Bishop)

• A buffer overflow attack can be decomposed into primitive
conditions that must exist for the attack to succeed

• Stop any of the primitive conditions and the attack cannot
succeed

• Four primitive conditions in fingerd attack on Unix system
– C1. Failure to check bounds when copying data into a buffer.

– C2. Failure to prevent the user from altering the return address.

– C3. Failure to check that the input data was of the correct form (user
name or network address).

– C4. Failure to check the type of the words being executed (data
loaded, not instructions).

Invalidating these conditions prevents
the exploitation (Bishop)

• C1’. If the attacker cannot overflow the bounds, the control flow will
continue in the text (instruction) space and not shift to the loaded
data.

• C2’. If the return address cannot be altered, then even if the input
overflows the bounds, the control flow will resume at the correct
place.

• C3’. As neither a user name nor a network address is a valid
sequence of machine instructions on most UNIX systems, this
would cause a program crash and not a security breach.

• C4’. If the system cannot execute data, the return into the stack will
cause a fault. (Some vendors have implemented this negation, so
data on the stack cannot be executed. However, data in the heap
can be, leaving them vulnerable to attack.)

Common Weakness Enumeration
(MITRE)

• Dictionary of software weaknesses

• Amalgamation of over a dozen taxonomies
– CLASP, PLOVER, Pernicious Kingdoms, etc.

• Approximately 807 weaknesses or weakness
categories described

• Example: CWE-120: Buffer Copy without Checking
Size of Input ('Classic Buffer Overflow')
– The program copies an input buffer to an output buffer without

verifying that the size of the input buffer is less than the size of the
output buffer, leading to a buffer overflow.

Reporting of CWEs

• Consider:

• Is the vulnerability:

– CWE-121 Stack based Buffer Overflow

 or

– CWE-20 Improper Input Validation?

1 /* Stack Overflow */

2 #define BUFSIZE 256

3 int main(int argc, char **argv) {

4 char buf[BUFSIZE];

5 strcpy(buf, argv[1]);

6 }

Software Fault Patterns

• Pilot by DoD, NIST and DHS
– Develop a specification of software vulnerabilities that enables

automation

– Looked at subset of CWEs that could potentially be automated

• Those that can be formalized

• 302 CWEs

– Clustered 302 CWEs into 50 software fault patterns

– Developed whitebox definitions of a small number of CWEs

– Formalization (machine readable) of 18 CWEs

– Side effect of work identified a set of 81 Vulnerability Fundamentals

Fundamental Vulnerabilities

• Fundamental Vulnerability (FV) – A primitive
condition in software that can serve as the basis for
exploitation of the software

• FVs are defined in the format of a statement of fact

• An FV is the root cause of a software exploitation

• One or more FVs need to be exploited in order for an
attack to occur

• An attack can be disrupted if one or more in a series
of FVs is removed

Consider Buffer Overflow

• C1 (Bishop). Failure to check bounds when copying data into a buffer.

• FV: Check of array bounds before array access does not exist
or is faulty

• C2 (Bishop). Failure to prevent the user from altering the return address.

• FV: Direct access to a memory address is permitted (can
use/alter address of memory to access memory)

• C3 (Bishop). Failure to check that the input data was of the correct form (user
name or network address).

• FV: Input checks do not exist or are faulty
• C4 (Bishop). Failure to check the type of the words being executed (data loaded,

not instructions).

• FV: Code and data are indistinguishable in memory
(commands are treated as data)

A Buffer Overflow Cannot Occur if…

• If a check of array bounds is performed correctly before the
access

– FV: Check of array bounds before array access does not exist or
is faulty

• If memory addresses cannot be directly accessed or altered

– FV: Direct access to a memory address is permitted (can
use/alter address of memory to access memory)

• If input is validated correctly

– FV: Input checks do not exist or are faulty

• If code and data is segregated in memory

– FV: Code and data are indistinguishable in memory (commands
are treated as data)

CWEs and FVs

• CWE-369 Divide by Zero

– FV: Check that divisor is not 0 before division is performed
does not exist or is faulty

• CWE-732 Incorrect Permission Assignment for Critical
Resource

– FV: Check of permissions do not exist or are faulty

• CWE-561 Dead Code

– FV: Code exists in a program that is not on any execution
path

FVs Rooted in Language Structure

• FV: There is a duality of a string and a null terminated
array

• FV: There is syntactic ambiguity in the language

• FV: Signed and unsigned data types are converted
from one the other

• FV: There is a disconnect between a pointer and the
resource that it represents

FVs Across a Variety of Languages

• FV: Input checks do not exist or are faulty

• FV: Return value check does not exist or is faulty

• FV: Variable is used before it is initialized

• FV: Binary compilation is not functionally equivalent
to its source

• FV: Hardware is not standardized

– size of short, int, long differ between platforms

FVs Interaction with Environment

• FV: Security check is not performed local to
the application

– Security check is performed on client for a server
application

• FV: Interface with another language is
inconsistent

FVs Resource Interaction

• FV: Ownership of a resource expires

– Memory containing sensitive information can then
be read by some other program

• FV: History and provenance is not available for
use at authentication points

– No basis for determining the integrity of
dynamically linked resource

• FV: Race condition for shared resource exists

Current Status

• About 70 FVs have been identified

• List has been mapped against the 2011
CWE/SANS Top 25 Most Dangerous Software
Errors

• List is still being refined and expanded

Thank you.

