Determining the Fundamental
Basis of Software Vulnerabilities

Larry Wagoner
NSA

Agenda

* Background
— Analogous background
— Matt Bishop work
— CWEs
— Tool reporting of CWEs
— KDM Analytics

* Determining the fundamental basis

Elements of the world

* Classical elements in Babylonia (¥17 B.C.): Sea,
Earth, Fire, Sky and Wind

 Greek Classical Elements:

— Four terrestrial elements: Earth, Water, Air and
Fire
— Sometimes a fifth element, Aether, was added

* Aether is “pure, fresh air” or “clear sky”

— Persisted throughout the middle ages
 Now viewed as a simplistic view of the world

More modern view

e Basic building blocks of matter
— Atoms
* Protons, neutrons, electrons

— Elementary particles Elementary Particles
* Quarks, leptons, bosons

Leptons Quarks

Periodic Table of Chemical Elements

Presented by the number of protons in
the atom’s nucleus

PERIODIC TABLE

°'°“’ Atomic Properties of the Elements

Frequently used fundamental physwcal constants
For P 0oag oot v of Berte Wud OB u CORMATTY W [PI/RCR T (R0 CONMEEEY
1 second » § Y52 B9 TT0 pariods of radeton tomespondng N
Dataen Be mmdumma‘m TR
Speed of SNt i vacuum ¢ JWETIAN my {waact) v w‘
Planch coratat L] 481 10N »=A29) m
werantary chacge . 10022« 10" m
wacTon masy ” 94054 « 10 g = -
me 0590 MV w
9081, |V fratricire corsian & :'g?osom » e
"'7, :L,",, does; combart R, WINITR: = ; 3
N 5,125 5 ok A 13 v, (14 ¥ |15 "5, [16 ¥,
o R 158087 oV s v (]
Na g Eontrare Lomyart * 13807 105K Al s‘ s
3 Soudesm N Presgheona Subs
> WA)J‘X_I.-
o'’ | g’y
1) e 0 W0
33 L |34 T,
As | Se
Arwrni St
A Ta o ne
O waﬂ”n‘u'
vt & Tase
AL RS sz v: 8

Avrurm T Nave

wmmw we 10 0“!

e s wm\‘- s -\
A LA

183 sy M 'o-: 'r;,

Barum Fobmm Asigue
E - ey)
' ' e’
T 284 a4
o

\

ol
o

Bl D.[58_ G[9 T > [6a_]68_ W68 |70 5[1 o,
P I 3| La Ce Pr Nd |Pm Sm|Eu | Gd|Th Dy | Ho | Er |Tm| Yb Lu
w\ 58 G: LwRons g N Poretam | Sonwn | Ewopun | Gadbess Totes | Dymeosm | Holewn Bt T Fietam Latn
3 0 wrs Ill "I 140 s e 1 na» =1 |'{H "‘Q‘)_‘ e e 54 5000 wexe ‘*')‘4' ms LR E

W ce Bl e e Bl e I il IO Pl o e o ey x-ow | e | e’
Narw P 5 S0 s a7 %471 54290 L) 28037 = €04 ™ & v s 2w eae 6 1077 o 62500 50

e - 320,118 89 0,190 7|91 .92 L,[93 L. 194 5|95 'S:J“ o |97 S, |98 T |1 W, (104 ’F‘ 102 ' 103 ¥,
g Aoewses| | 2 Ac | Th|Pa| U |[Np|Pu|Am|Cm]| Bk Fm Md No | Lr

/ 55347 Awes Thomes | Protactewen | Dbwsom | Mgt | oo | Asesus | Ooun Frchbors | Cobomwan | Evatownay | Fommmn | Moaddem | Nobobar | Lnsrwrins
@ | oo | nrosse | e | E) o0 @47) o @) o @) aum) onn

m w wemers’ | s | puareard | pogervand’ | pndean’ | poatsd | ! ol B vl il ol el el B e
P 8 wer Sw v 1 L €% 858 & e 48y

wq& () ebeaes T ass rurriar of e mosl slate schive

WHAT ARE THE ELEMENTARY
BUILDING BLOCKS OF SOFTWARE
VULNERABILITIES?

“Vulnerabilities Analysis”

M. Bishop, “Vulnerabilities Analysis,” Proceedings of the
Second International Symposium on Recent Advances in
Intrusion Detection pp. 125-136 (Sep. 1999).

Goal was to develop a classification scheme for vulnerabilities

Scheme is deterministic
— Each class has exactly one property

— “yes” or “no” answer for membership

Classification based on the code, environment or other
technical details

— Social cause is not a valid class

Seeking consistent classification

Data and Stack Buffer Overflow
Breakdown (Bishop)

* A buffer overflow attack can be decomposed into primitive
conditions that must exist for the attack to succeed

e Stop any of the primitive conditions and the attack cannot
succeed

* Four primitive conditions in fingerd attack on Unix system
— C1. Failure to check bounds when copying data into a buffer.
— C2. Failure to prevent the user from altering the return address.

— C3. Failure to check that the input data was of the correct form (user
name or network address).

— CA4. Failure to check the type of the words being executed (data
loaded, not instructions).

Invalidating these conditions prevents
the exploitation (Bishop)

C1'. If the attacker cannot overflow the bounds, the control flow will
continue in the text (instruction) space and not shift to the loaded
data.

C2’. If the return address cannot be altered, then even if the input
overflows the bounds, the control flow will resume at the correct
place.

C3'. As neither a user name nor a network address is a valid
sequence of machine instructions on most UNIX systems, this
would cause a program crash and not a security breach.

C4’. If the system cannot execute data, the return into the stack will
cause a fault. (Some vendors have implemented this negation, so
data on the stack cannot be executed. However, data in the heap
can be, leaving them vulnerable to attack.)

Common Weakness Enumeration
(MITRE)

Dictionary of software weaknesses

Amalgamation of over a dozen taxonomies
— CLASP, PLOVER, Pernicious Kingdoms, etc.

Approximately 807 weaknesses or weakness
categories described

Example: CWE-120: Buffer Copy without Checking
Size of Input ('Classic Buffer Overflow"')

— The program copies an input buffer to an output buffer without
verifying that the size of the input buffer is less than the size of the
output buffer, leading to a buffer overflow.

Reporting of CWEs

[* Stack Overflow */
#define BUFSIZE 256
Int main(int argc, char **argv) {

 Consider: 1
2
3
4 char buf[BUFSIZE];
5
6

strepy(buf, argv[1]);
}

* |s the vulnerability:
— CWE-121 Stack based Buffer Overflow

or
— CWE-20 Improper Input Validation?

Software Fault Patterns

Pilot by DoD, NIST and DHS

— Develop a specification of software vulnerabilities that enables
automation

— Looked at subset of CWEs that could potentially be automated
* Those that can be formalized
* 302 CWEs
— Clustered 302 CWEs into 50 software fault patterns
— Developed whitebox definitions of a small number of CWEs
— Formalization (machine readable) of 18 CWEs
— Side effect of work identified a set of 81 Vulnerability Fundamentals

Fundamental Vulnerabilities

Fundamental Vulnerability (FV) — A primitive
condition in software that can serve as the basis for
exploitation of the software

FVs are defined in the format of a statement of fact
An FV is the root cause of a software exploitation

One or more FVs need to be exploited in order for an
attack to occur

An attack can be disrupted if one or more in a series
of FVs is removed

Consider Buffer Overflow

C1 (Bishop). Failure to check bounds when copying data into a buffer.

FV: Check of array bounds before array access does not exist
or is faulty

C2 (Bishop). Failure to prevent the user from altering the return address.

FV: Direct access to a memory address is permitted (can
use/alter address of memory to access memory)

C3 (Bishop). Failure to check that the input data was of the correct form (user
name or network address).

FV: Input checks do not exist or are faulty

C4 (Bishop). Failure to check the type of the words being executed (data loaded,
not instructions).

FV: Code and data are indistinguishable in memory
(commands are treated as data)

A Buffer Overflow Cannot Occur if...

If a check of array bounds is performed correctly before the
access

— FV: Check of array bounds before array access does not exist or
is faulty

If memory addresses cannot be directly accessed or altered

— FV: Direct access to a memory address is permitted (can
use/alter address of memory to access memory)

If input is validated correctly
— FV: Input checks do not exist or are faulty
If code and data is segregated in memory

— FV: Code and data are indistinguishable in memory (commands
are treated as data)

CWEs and FVs

e CWE-369 Divide by Zero

— FV: Check that divisor is not O before division is performed
does not exist or is faulty

e CWE-732 Incorrect Permission Assignment for Critical
Resource
— FV: Check of permissions do not exist or are faulty

e CWE-561 Dead Code

— FV: Code exists in a program that is not on any execution
path

FVs Rooted in Language Structure

FV: There is a duality of a string and a null terminated
array

FV: There is syntactic ambiguity in the language

FV: Signed and unsigned data types are converted
from one the other

FV: There is a disconnect between a pointer and the
resource that it represents

FVs Across a Variety of Languages

FV: Input checks do not exist or are faulty
FV: Return value check does not exist or is faulty
FV: Variable is used before it is initialized

FV: Binary compilation is not functionally equivalent
to its source

FV: Hardware is not standardized
— size of short, int, long differ between platforms

FVs Interaction with Environment

e FV: Security check is not performed local to
the application

— Security check is performed on client for a server
application

* FV:Interface with another language is
Inconsistent

FVs Resource Interaction

* FV: Ownership of a resource expires

— Memory containing sensitive information can then
be read by some other program

* FV: History and provenance is not available for
use at authentication points

— No basis for determining the integrity of
dynamically linked resource

e FV: Race condition for shared resource exists

Current Status

e About 70 FVs have been identified

* List has been mapped against the 2011

CWE/SANS Top 25 Most Dangerous Software
Errors

* Listis still being refined and expanded

Thank you.

