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ABSTRACT

Onion routing was invented more than fifteen years ago to
separate identification from routing in network communica-
tion. Since that time there has been much design, analysis,
and deployment of onion routing systems. This has been ac-
companied by much confusion about what these systems do,
what security they provide, how they work, who built them,
and even what they are called. Here I give an overview of
onion routing from its earliest conception to some of the lat-
est research, including the design and use of Tor, a global
onion routing network with about a half million users on any
given day.

1. WHY ONION ROUTING

We (David Goldschlag, Michael Reed, and I) began work
on onion routing in late 1995 with the goal to separate identi-
fication from routing. Onion routing has often been said (by
ourselves and others) to provide anonymous communication,
but ‘anonymity’ can be taken in many ways, and misunder-
standing about that has led to significant missteps in system
design and analysis. To quote from our paper at ACSAC
‘96, “Our motivation here is not to provide anonymous com-
munication, but to separate identification from routing. Au-
thenticating information must be carried in the data stream.
Applications can (and usually should) identify themselves to
each other. But, the use of a public network should not au-
tomatically reveal the identities of communicating parties.
The goal here is anonymous routing, not anonymity.” [43].

If T need to log into the workstation in my office at the
Naval Research Laboratory from a remote location, I want
to be sure that I am connecting to the right system before
I start entering my username and password. Similarly, I
want the system to be sure it’s me before granting access.
Nonetheless, I may not want, e.g., the wireless access point
at my remote location or anyone in range of it to know
that someone is connecting to NRL from there. Nor might
I want this to be known by all the other elements on the
communication path from me to my workstation.

In other cases, however, I may want to hide my iden-
tity from the system at the far end. For example, if I am
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reviewing a submission for publication or a proposal from
someone, where review is to be anonymous and I need to
check something at the submitter’s web site, I would like
to do so without revealing my identity to the web server.
What I mean by ‘identity’ we will revisit more thoroughly
below. But if I am originating the connection at my office
workstation, it might include my IP address as well as any-
thing else that could indicate who the reviewer is or possibly
broader aspects, such as that the reviewer is from the Navy.
This could be indicated by either things I type or things
that applications send through the connection, for example,
cookies. But again, the goal is to separate the choice to iden-
tify or not from the routing necessary for communication to
take place.

2.  WHO ONION ROUTING

Onion routing systems have a wide variety of users with a
variety of purposes. Tor is the most well known and widely
used onion routing system. As of the time of writing it serves
over half a million concurrent users over a network infras-
tructure comprised of about three thousand onion routers of
one type or another [53].

I have already described two ways users might want to
protect themselves using onion routing. There are many
types of users and many uses for onion routing. Law en-
forcement and intelligence agencies need to operate on the
Internet without revealing their activities or intentions to
those they are investigating or anyone else observing. And
the “road warrior” mentioned above is protected both from
profiling of his online activities and affiliation, and from po-
tential physical harm by an adversary who can easily and
discretely associate these with the hotel he is staying in [19].
Road warriors typically use Virtual Private Networks to help
protect their communications. But VPNs provide limited
protection against this threat if it is easy to associate users or
affiliations with a VPN, and the adversary can observe con-
nections to the VPN. Also, while onion routing distributes
trust as we shall see, externally provided VPNs typically
constitute a single point of trust and thus a single point of
failure for protecting routing information.

Penetration testing engineers have found that if they have
a limited IP space from which to launch attacks, defenders
have been able to use this to spot attacks. Onion routing
can help in this regard, although without additional safe-
guards this would make onion routing networks appear to
be a vector for abuse [18].

Victims of various types of diseases, as well as of crimes
and abuse have used onion routing to do research and to chat



with fellow victims without risk of exposure [15]. Besides the
more obvious information security protections these afford,
the ability to speak freely and anonymously has long been
recognized as an important therapeutic benefit.

Many ordinary citizens simply want to limit the amount of
information about themselves that is being gathered every
time they go online. How this information will be exploited
by businesses or criminals is often not yet understood at
the time it is gathered, so prudence counsels prevention. Or
they may want to protect their children from being geolo-
cated by those observing or engaging the children in online
activity—geolocation that can take place simply from the
act of connecting even before the child has entered anything
into the application.

This is just a small sampling of the types of onion routing
users. Central to the protection that onion routing provides
is that all of these different types are sharing the network.
Otherwise the problem noted above for VPNs would apply
to onion routing as well. Anything coming out of, for exam-
ple, a Navy-only onion routing network would be known to
be coming from the Navy and anything entering it would be
known to be headed to the Navy: this would not adequately
separate identification from routing. But the diverse users
needed to provide this protection also have diverse trust val-
ues. Thus the entire network infrastructure cannot be pro-
vided by or under the control of a single entity. And since
those running the network will similarly have diverse trust,
they must be able to examine for themselves the code that
they run, or at least be sure that independents whom they
trust can do so. These points were part of our vision for
onion routing from the very beginning, and we obtained our
first publication release for onion routing code in 1996, be-
fore 'open source’ was a generally adopted concept.

Besides needing to adequately trust the system, both users
and providers must want to use and/or provide the system.
This was addressed in the papers cited above. But even
before then, it was the central topic of “On the economics
of anonymity” [1]. From the perspective of users, a basic
dilemma arises from the difficulty of trying to be anonymous
by yourself. Unlike other security properties, those who need
strong protection will not be early adopters because the sys-
tem will then be known to be protecting the relatively small
set of most sensitive users. So merely connecting or sending
to it will be revealing of something they will probably want
to hide. Similarly any destination of traffic from the system
is revealed as something of interest to one of those most sen-
sitive users. Contrastingly, the less sensitive user will have
inadequate incentive to pay for the system. This means that
a certain degree of free riding must be built into the system.
On the one hand, this means that less sensitive users will be
getting protection virtually for free. On the other hand, by
their use of the system they effectively provide better pro-
tection for the more sensitive users. So it is not free riding
from the security perspective.

But even just looking at user cost, it is not really en-
tirely for free. The security onion routing provides comes
with some inevitable usability and performance overhead.
We will get more into how it works below, but for now it
is enough to note this and to note its impact on security.
Back et al. have stated that “In anonymity systems usabil-

124

ity, efficiency, reliability and cost become security objectives
because they affect the size of user base which in turn af-
fects the degree of anonymity it is possible to achieve.” [4].
In fact perceived usability by others is also a factor because
it affects expectations about how likely others are to use the
system and provide us with cover. In a sense, a system that
is not as secure by some analytic criterion may be more se-
cure in fact if opinion drives more users to that system [15].
We will revisit such seemingly paradoxical issues below when
we discuss security definitions and metrics.

3. HOW ONION ROUTING

Before getting into defining ‘security’, we should spend
a little time defining ‘onion routing’ and describing how it
works because there has been a surprising degree of confu-
sion about what onion routing is and is not.

Symmetric-key cryptography is generally much cheaper
computationally than public-key cryptography is. But sym-
metric-key cryptography only works if both communicating
parties share a key. An advantage of public keys is that Al-
ice can send an encrypted message to Bob without having to
share a key with him first. A primary application of public-
key cryptography is thus in protocols to establish a shared
(symmetric) key for Alice and Bob to use in a communica-
tion session. If a large amount of data is sent in the session
encrypted with this shared key, the computational overhead
is much less than if public keys were used throughout the
session. There are many other benefits to establishing a
shared session key, but we focus on this feature for now.

Onion routing is in one sense just a generalization of this
basic idea. It can use the more computationally expensive
public-key cryptography to lay a cryptographic circuit of
shared symmetric keys along an unpredictable route. The
circuit can be bidirectional, and each session key is shared
between the initiating client and one onion router in the
path. Data that is sent by the client is wrapped in layers,
except that the layers are created using the shared symme-
tric keys rather than public keys. Using the symmetric key
it learned when the circuit was laid, each onion router re-
moves a layer of encryption as the data passes. In this way
the data emerges at the end of the circuit as plaintext (from
the perspective of the onion routers. It could be ciphertext
if that is what is being sent over the circuit by the applica-
tion.) Data passing back from the responder, for example
from a web server, has a layer of symmetric crypto added to
it as it passes through each onion router node in the path.
It thus arrives at the circuit initiator as a layered data struc-
ture. The circuit initiator set up the circuit and so is able to
remove the layers using the symmetric keys for that circuit.

Onion routing was invented to facilitate anonymous low-
latency bidirectional communication, such as occurs in web
browsing, remote login, chat, and other interactive applica-
tions. By only using public-key cryptography to establish
session keys it allows for throughput and latency that would
not be feasible if public-key operations were needed for each
message (or packet) passing through the system. By follow-
ing a multihop free-route path selection through a network
of independently managed onion routers, it makes it hard
for an adversary to observe traffic entering and leaving the
system.



3.1 An onion by any other name would smell
as sweet

In onion routing, application data is passed inside a lay-
ered data structure as just described. In the first two gen-
erations of onion-routing design [27, 44, 50] that emerged
from NRL, the circuit was also laid by means of a layered
data structure, with two primary differences. (1) Each layer
also provided the material to generate the symmetric keys
used for passing the data back and forth. (2) The final layer
contained neither a destination address nor meaningful con-
tent to be transmitted. Thus, abstractly the onion for a
three-hop route through R, Rz, R3 looked like this:

E(PKR17 [Kly Rs, E(PKRz7 [K27 Rs, E(PKRsv [K?n Pad] )] )] )

where ‘PKg,’ is a public key for R;, and ‘K;’ is session-
key material to be shared between the route originator and
R;. We are ignoring some details here to focus on these two
features of the structure. In particular, note that what is
encrypted for the last layer is just the symmetric-key mate-
rial to be used for passing data back and forth and then just
empty padding. Thus, there is no message at the innermost
core of the onion: the onion is the layers themselves, much
like the root vegetable from which it gets its name. Indeed,
this structure is the basis for the choice of the name “onion
routing”: the network routes onions—mnot just layered data
structures, but data structures that are comprised of layers
and nothing else. Using “onion” to describe a layered data
structure is not unique to onion routing or to structures
specifically comprised of nothing but layers. Independently
and contemporaneously with the first descriptions of onion
routing, “onion” was used by Giilcii and Tsudik to describe
a structure somewhat like the ones above for a mix-based®
remailer network [28], and there may be even earlier uses.
We are not averse ourselves to referring to the packets being
sent over the cryptographic circuit as “data onions”.

Furthermore, though the circuit-building onions gave onion
routing its name, they are not what makes it onion routing.
The essential feature is that public keys are used to lay a
cryptographic circuit of symmetric keys, which is then used
to pass data. Other onion routing designs that we will dis-
cuss later do this by effectively only sending one onion layer
at a time through the partial circuit already created.

‘Onion routing’ has also at least occasionally been used
in published research to refer to networks that do not lay a
circuit at all. Though we will countenance somewhat varied
use of ‘onion’ to cover “data onions” or “message onions”, we
will stick to using ‘onion routing’ for designs that lay cryp-
tographic circuits—which was what those of us who coined
the phrase had in mind.

It is instructive to explore the origins of this mistake in us-
age, but it requires that we examine the differences between
mixes and onion routers. Mixes were invented by David
Chaum in 1981 [9]. Briefly, a mix takes in a batch of packets
or messages, reorders them, cryptographically changes their
appearance, possibly adds new messages or previously de-
layed messages from an earlier batch, and possibly removes
some received messages from the batch. It then forwards the
resulting batch to other mixes or to ultimate destinations.
The mix’s operations make it difficult for anyone observing
the mix to correlate observed input messages with observed

"We will say more about mixes presently.
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output messages. Other than for purposes of contrast, we
will not discuss mixes, which have many variations and an
extensive literature in their own right [11, 21].

Mix networks get their security from the mixing done by
their component mixes, and may or may not use route unpre-
dictability to enhance security. Onion routing networks pri-
marily get their security from choosing unpredictable routes
through a network, and onion routers typically employ no
mixing at all. This gets at the essence of the two even if it
is a bit too quick on both sides. Other typical and highly
salient distinctions include that all existing onion routing
network designs are for carrying bidirectional low-latency
traffic over cryptographic circuits while public mixnets are
designed for carrying unidirectional high-latency traffic in
connectionless messages®. Mixes are also usually intended
to resist an adversary that can observe all traffic everywhere
and, in some threat models, to actively change traffic. Onion
routing networks are generally completely broken against an
adversary who observes both ends of a communication path.
Thus, onion routing networks are designed to resist a local
adversary, one that can only see a subset of the network and
the traffic on it.

Given the fundamental differences in the mechanisms they
employ, the adversaries they are intended to resist, and their
basic designs (not to mention typical applications), how
could anyone who works in this area ever confuse the two?
All deployed onion routing networks do use some form of
layered encryption on traffic they carry, encryption that is
gradually removed as it passes through the network. And
this is also true of decryption mixnets (re-encryption mixes
work differently). Thus there is a clear similarity between
the two in at least this respect. Still, given the differences,
how could this be enough to confuse an expert? The stan-
dard conception of security found in the literature—which in
turn motivates system designs—assumes the goal of all sys-
tems that hide who is talking to whom is to make a given set
of users (or user communications) less distinguishable. If one
motivates design by starting with such a set and seeing how
well the system obscures identification of its elements, the se-
curity contributions of an onion routing approach are harder
to see. Any distinction between onion routing networks and
mixnets, if recognized at all, is then likely to be couched only
in terms of differences in intended application or engineering
tradeoffs of security versus performance. Even we designers
of onion routing systems have been occasionally guilty of
falling into this idiom. We discuss adversaries and security
definitions further in [48] and below in section 5. Our goal
here was simply to make clear the difference between mix
networks and onion routing networks.

Another confusion is that we have historically used ‘onion
routing’ both to refer to the general approach described
above and to refer to specific system designs that emerged
from projects at NRL. To distinguish between these below,
we will use ’onion routing’ to refer to all onion routing sys-
tems and will use 'NRL onion routing’ to refer to the specific
designed and deployed versions of onion routing that have
come out of the NRL onion routing projects, unless this
is clear from context. References to one generation or an-
other of onion routing will also be an indication that it is
specifically one of the NRL-originated designs that is being
discussed.

% An exception is Web MIXes [6], which creates bidirectional
circuits through mix cascades to carry public web traffic.



Though onion routers are not mixes, it is possible to have
a combination, producing a subclass of onion routers (and
of mixes). Specifically, in the second-generation design from
NRL, some low-latency timed mixing was added [44]. Prior
anonymizing networks had been based on mixing, and real-
time mixing per se did not add much overhead. It was hoped
that by introducing realtime mixing, it would be possible to
explore its possible benefits and simplify security analysis
at least with respect to an external passive attacker. It
was also hoped that this would make onion routing more
palatable to the community by making it more familiar. If
mixing was to be anywhere near realtime, however, then it
would be necessary to do some padding and/or rate limiting
to avoid trivial timing correlations. Though a full-length
padding scheme was immediately dismissed as too costly,
padding and bandwidth limiting based on a sliding-window
weighted average of prior traffic was considered potentially
viable [51]. Just like the first and the third, this second-
generation design of onion routing made use of TCP and
stream ciphers on the links between onion routers as well
as end to end. The mixing onion routers had to be low-
latency, mixing only packets that had arrived during a very
short prior interval. But, the use of TCP and stream ci-
phers also meant that mixing could only be of packets on
different circuits going through an onion router: traffic on a
given circuit was not mixed with itself so as to preserve or-
der. (TCP (Transmission Control Protocol) is one of the two
main ways that traffic is passed over the Internet. It pro-
vides guaranteed and in-order packet delivery at the expense
of some timeliness. The other main protocol is UDP (User
Datagram Protocol), which provides no such guarantee and
is better for applications with tighter realtime constraints
that can tolerate some lossiness, for example VOIP.) Though
padding or other approaches might prevent most short-term
passive eavesdropping, nothing practical that has been pro-
posed to date is expected to be effective against an active
attacker. Various schemes have been proposed to cope with
active timing correlation attacks. The earliest was PipeNet,
which was originally proposed in a cypherpunks mailing list
post in 1995 [10], although it was never formally published.
PipeNet essentially required that all sending be at a persis-
tent constant rate. To fully avoid any correlation no sender
or recipient can join or leave the network once it is formed,
and the entire network must be shut down as a single origi-
nator of communication stops sending. Though not all sub-
sequent proposals are as draconian, and even ignoring the
padding overhead, those that aren’t are generally ineffective:
they impose too much delay, require that the responder be
an active participant in the scheme, or some combination of
these.

By the time the third-generation onion routing design
was begun, nobody had proposed a practical traffic-shaping
scheme that wasn’t fundamentally weak in some way. Indeed
that remains true to this day. An unknown research break-
through remains possible; however, all thought of making
onion routers function as mixes was abandoned when the
third-generation design was begun until such time as this
could be shown to have any value against realistic adver-
saries [17].

4. WHICH ONION ROUTING

This paper was invited to accompany an ACSAC classic
paper talk. But, I must confess that I am not sure which
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classic onion routing paper prompted the invitation. Within
a half year of publishing the first onion routing design at the
Information Hiding Workshop in May of 1996 [27], we pub-
lished another paper at ACSAC that first described separat-
ing a client proxy that constructs the circuit from the onion
routers that can carry circuits from many clients [43], and
the following May we presented another paper that intro-
duced many of the second-generation features most closely
associated with onion routing [52].

I have alluded above to three generations of onion routing.
I mean by this the three generations of onion routing design
done by U.S. Naval Research Laboratory (NRL) researchers
and various people contracted to work with them—most no-
tably for the third-generation (Tor), Roger Dingledine and
Nick Mathewson of what is now the Tor Project. There
are many differences between the generations and difference
from other flavors of onion routing besides those that came
from NRL. Most of these we will ignore for now, but some
of the primary distinctions between the three generations I
mentioned are the following.

First-generation onion routing:

e fixed-length, five-node circuits: Onion routing was
intended to allow anonymous connections to Internet
servers, such as web servers, that were not part of the
onion routing network. But, a configuration that was
also intended for protection was communication be-
tween two enclave firewalls, on both of which were
onion routers. If routes were three hops, a hostile
middle node would immediately learn both source and
destination enclaves. If routes were four hops, someone
compromising the node adjacent to the source or des-
tination enclave would immediately know which other
node to attack to learn an entire circuit and thus who
was talking to whom. By having five hops in a circuit
this adversary would not have this information unless
it attacked another node first.

e integrated configuration: A client, as described
above, and an onion router are fully combined. Client
applications could proxy through onion routing with-
out participating in the network or running any soft-
ware. But, all elements of onion routing communi-
cation are essentially between peers, and building of
routes is entirely determined by and under the control
of the first onion router in the circuit.

e static topology: There were no provisions for topol-
ogy change or network discovery in the first-generation
design. It was assumed that there would be a modest
size network of nodes (perhaps twenty to one hundred)
run by stable organizations that were not all mutually
trusting of each other and that information about net-
work configuration, signing keys, etc. would be han-
dled offline. This was thus seen as at most a detail to
be addressed later.

e loose-source routing: In case a node was unable
to connect to the subsequent node in a circuit, e.g.,
because of underlying network problems, it could build
its own onion through which it would pass the onion
it was given. Thus, it would attempt to complete the
circuit by adding more indirection to the route.



e numerous application-specific proxies: In the mid

nineteen nineties applications were increasingly writ-
ten to be proxy-aware as firewalls became more com-
mon; however, most applications did not yet use the
SOCKS protocol that standardizes such interaction.
For this reason, the first-generation of onion routing
contained specific proxies for web traffic, for remote
login, for email, and for other applications.

rendezvous servers and reply onions: A rendez-
vous server allowed two anonymous circuits to mate.
This permitted two parties that were anonymous from
both the server and each other to communicate, e.g., in
IRC chat. Reply onions built a circuit to connect back
to a source that wished to remain anonymous. This
could be used for replies to anonymous email or for
providing access to a hidden web server. In this way
someone who wished to provide a server that could
be contacted while remaining anonymous could do so
without the risks that affected Penet [29].

Second-generation onion routing:

e running a client separated from running an onion

router: Perhaps the most important distinction from
the first generation. This permitted an increased flexi-
bility in how clients could manage trust and resources.
Previously users would be forced to either provide a
computer to participate in the onion routing infras-

tructure themselves or to trust some remote onion router.

Now clients could learn about the network and could
build their own routes without being required to route
traffic for others themselves or trusting a remote com-
puter with control over their routing and knowledge of
it.

variable length circuits: The second generation had
variable length circuits (up to eleven hops within a sin-
gle onion, although tunneling to even greater lengths
was also possible). In addition to other advantages,
this allowed access under different configurations to
route within the network in essentially the same way.
For example, whether onions were built on a client
desktop or at an enclave firewall the rest of the path
could be the same.

application independent proxies: A more generic
SOCKS proxy was added for those applications that
could use it. There was also a redirector that would
force all TCP traffic over the onion routing network.
This required a kernel shim to be installed, ran only
on Windows NT, and (unlike all other onion routing
code of all generations) was not built for open source
distribution.

entry policies and exit policies: It was recognized
that different individuals and organizations running
onion routers might have different policy needs. They
might want to only permit access to the onion rout-
ing network from within an enclave on whose firewall
the onion router resided, or only permit exits to that
enclave. Alternatively, they might permit email traffic
(SMTP) to exit only to some locations and web traffic
(HTTP) to exit to arbitrary locations. Thus individ-
ual onion routers could set their own entrance and exit
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e Onion skins not onions:

policies [50]. This has significant economic impact on
network participation and scalability, although the im-
pact of separating clients from onion routers may be
even greater [1, 15].

dynamic network state: As in the first-generation,
network topology is assumed to be predefined with
each node knowing its neighbors. Networks were ex-
pected to either be cliques of at most several dozen
nodes or, if needed, composed of such cliques with
multiple bridges between them. Thus, basic network
membership and acceptance of long-term keys were
still assumed to be based on outside communication.
Nonetheless, link state and other network informa-
tion were maintained by flooding signed information to
the “database engines” (DBE) attached to each onion
router. The DBEs were also used to propagate exit
policies so that originators would only build circuits
to exit the onion routing network at nodes where the
intended traffic would be permitted to exit.

mixing of cells from different circuits: Realtime
mixing of cells from different anonymous circuits was
added. This permitted the exploration of timing, pad-
ding, and the like. It was, however, ultimately aban-
doned in the third-generation until there is at least
some theoretical justification for hoping it will provide
any benefit against an active adversary.

padding and bandwidth limiting: Traffic is shaped
according to a sliding-window weighted average of prior
traffic to support protection against a passive eaves-
dropper doing traffic analysis. Also abandoned in the
third-generation.

Third-generation onion routing (Tor):

Diffie-Hellman based
circuit building: Perhaps the most important dis-
tinction from the first and second generations. As
noted above, in the first two generations, circuits were
built using an onion structure to distribute session
keys. This meant that processed onions had to be
kept track of at onion routers until they expired to
prevent someone from replaying an onion many times,
which might support various kinds of attacks. It also
meant that, because session keys were distributed in
the onion, anyone who captured an onion and all the
(encrypted) traffic on a corresponding circuit could
recover all the plaintext if the public keys that en-
crypted the onion were later broken or otherwise ob-
tained. The onion-based key-distribution protocol was
said to lack forward secrecy. By extending the cir-
cuit one hop at a time, effectively sending a single skin
of an onion, session keys could be obtained using a
Diffie-Hellman key establishment protocol. This pro-
tocol allows the communicants to exchange ephemeral
public keys that can be combined with a private key
of the other to establish a session key. The session key
is never sent, even in encrypted form. This provides
forward secrecy, meaning that, even if longterm keys
are compromised at some point in the future, session
keys will not be. Also, since different ephemeral keys
are used at each hop of extending the circuit, there is
no threat of replay so there is no need to keep track of



onions that have already passed. Interestingly, we con-
sidered but abandoned in the spring of 1996 [40] the
option of using public Diffie-Hellman values to achieve
efficiency gains in computation. Our intended design
was to include the public DH-values from the origina-
tor inside the layers of circuit building onions, which
were used in the first few generations of onion routing
designs, and then to combine these with public DH
keys (that we assume are DH-values used for generat-
ing keys). This is very similar to one of the protocols
we introduced much later [42]. Our focus was not on
forward secrecy but simply to be more computation-
ally efficient. We were certainly aware of forward se-
crecy and intentionally chose a protocol for securing
links between onion routers that provided it, but we
only pursued it with respect to outside attackers rather
than against compromised network nodes as well. The
idea of using Diffie-Hellman for basic circuit building
was simply another dropped design idea until work be-
gan on the Tor design, when it was picked up for the
forward secrecy it provided and for freedom from the
need to store onions against replay. The first descrip-
tion [27, 43] and implementation of onion routing uses
RSA public keys for distributing circuit session keys
and DH-established link encryption between the server
nodes. The current version of onion routing, Tor, uses
both a Diffie-Hellman key exchange and an RSA en-
cryption/decryption for each step on the anonymizing
tunnel setup. The computational advantages of using
Diffie-Hellman that we contemplated in 1996 lay dor-
mant until 2007, when we picked it up again, as did
others [42, 34, 33].

Fixed-length three-hop circuits: In Tor, primary
emphasis is placed on what was dubbed in the second-
generation, the “customer-ISP configuration” [44, 50]
or more generally, “remote-COR configuration” [51],
meaning that circuits are built by a local client and
enter the onion routing network at some remote onion
router after passing over some publicly visible network.
This, coupled with an abandonment of any pursuit of
mixing, reduces motivation for more than three hops to
a circuit. And three hops is minimal to protect against
two concerns. The first concern is that either the en-
try or exit node for the onion routing network might
be sensitive, e.g., if it is on an enclave firewall. In this
case two-hop routes have a single point of failure to
link a sensitive source to a destination or vice versa.
The second concern is that, in general, with two-hop
circuits a compromised entry or exit would immedi-
ately know for each connection through it the single
other point to attack to reveal the entire route. If the
adversary has resources that can be readily mobilized
for attacking at some of the nodes in the network when
needed, two-hop circuits would make his job much eas-
ier than three-hop circuits, for which he would need to
simply be lucky in knowing where to strike and when,
or would need to keep his resources persistently mobi-
lized everywhere.

Rendezvous circuits and hidden servers: First-
generation onion routing introduced rendezvous servers,
for example to permit people to onion route to a chat
server. And, hidden services were to be accessed via
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reply onions. Tor did away with onions per se and
thus introduced a design for hidden services based on
rendezvous circuits. On the one hand, this meant that
one did not need to worry if the onion routers in a
reply onion would be functional at the time the reply
onion was actually used. On the other hand, one had
to maintain open circuits to introduction locations at
which the hidden server could be contacted. (Actual
data is passed over a separate circuit to a rendezvous
point in order to minimize the traffic load and the re-
sponsibility of the introduction points.)

Directory servers: First-generation onion routing
simply assumed network information was static or dis-
tributed offline. Second-generation onion routing as-
sumed basic network membership information to be
established offline but used a flooding mechanism to
distribute authenticated network link state, keying in-
formation, and policy information necessary to build
circuits. Third-generation onion routing introduced di-
rectory servers to distribute network status, but also
network membership information. This is less com-
plex, more flexible, and more scalable than flooding
for maintaining a consistent picture of the network.
On the other hand, this change requires a handful
of trusted directory servers. Caching at other onion
routers reduces the risk of a performance bottleneck,
but this remains a trust bottleneck. Since the orig-
inal design, Tor has evolved through several versions
of directory structure to reduce the trust placed in in-
dividual directory servers, to increase resilience of the
network to faulty or malicious directory servers, and
to reduce overhead.

most application proxies eliminated as unnec-
essary: SOCKS is a protocol originally designed to
permit applications to communicate across firewalls in
a flexible and controlled manner. A SOCKS proxy was
added to second-generation onion routing, but other
proxies were still needed because adoption of SOCKS
was still limited. By the third generation, SOCKS had
become common enough that applications could be as-
sumed to use it and specific application proxies were
no longer needed. Nonetheless, some issues remained.
For example the most advanced version of SOCKS did
not proxy DNS requests, only an intermediate version
did. In addition, much network identification infor-
mation was often passed by applications regardless of
anonymization of the connection. For this reason, the
first two generations of onion routing included sanitiz-
ing proxies to reduce this. By the time of third ge-
neration, sanitizing proxies were being developed and
made freely available by others. Thus onion routing
could focus on its primary job of anonymizing the cir-
cuits and use what others provided if application san-
itization were needed. Note that sanitization should
be kept a separate function. (If one were logging into
work via SSH or a VPN over onion routing from a
remote location, for example, then such sanitization
is unnecessary and might hamper some authentication
or functionality.) As in the directory system, Tor itself
has evolved since 2004. In addition to SOCKS support
as above, it now allows the use of transparent proxies
(similar in function to the second-generation redirec-



tor for Windows NT), and it can process DNS queries
as if a DNS server itself.

The very first onion routing design was peer-to-peer in
the literal sense that all system elements interacted as peers.
But it was not a P2P design in the sense that all end-user
computers were expected to contribute to the infrastructure.
P2P onion routing designs in that sense have also received
a lot of attention. I simply cite a sampling of these designs
without analysis [45, 24, 39, 36, 35]. So far, every P2P
onion routing system has been shown within a year or so of
publication to have one or another significant break. Having
a completely decentralized design for node discovery and/or
route propagation, whether or not the lookup is structured,
is complex. I expect research in this area to remain both
interesting and volatile for a while, but we shall see.

Both second and third generation onion routing have a
client-server architecture, but where the server nodes are
entirely locally managed and network membership and sta-
tus is itself distributed. The second generation design for
this was via a flat propagation of network information (that
was never fully implemented and deployed). The current
public Tor network has on the order of ten directory author-
ities that are independently managed and exist in multiple
locations and jurisdictions. We have already mentioned this
above, but here we note that having such an architecture can
allow for significant scaling that is often cited as a goal of
P2P design. Allowing clients to participate without having
to provide servers means that many more can participate.
Allowing this while still having a large diverse network pro-
vides performance and protection that has yet to be achieved
by P2P designs [13].

We have not covered all of the features and differences
of the three generations on onion routing designed at NRL,
but we have hopefully covered the most salient basic distinc-
tions. Distinguishing the names of the different designs also
requires some explanation. The title of the Tor design pa-
per as originally published is “Tor: The Second-Generation
Onion Router”[17]. This was a misleading title in at least
three respects, which we will now set out. We will also ex-
plain the origins of the name ‘Tor’. To some extent, getting
all this straight will help readers have a clearer understand-
ing of onion routing and its history.

When the second-generation design above was begun, it
was called “Onion Routing, The Next Generation” out of
homage to a certain television series that was popular at
the time, particularly with some of the onioneers. It was
thus not only a second generation of onion routing, but one
that was deliberately considered another generation by its
designers. By contrast, when work on the Tor design be-
gan second-generation prototypes had been languishing for
a few years without much attention. Tor began in a project
originally intended to simply clean up and update the imple-
mentation of the second-generation software and tweak the
design where needed for better performance and fault toler-
ance. However, it was soon recognized that a more radical
redesign and re-implementation would more quickly lead to
a better system overall. One of Tor’s designers tended to
use “first-generation” for all work on onion routing prior to
when he started. Thus to him, Tor was second-generation.
One of the designer’s should have known better because he
was there for all the history of all the generations. However,
at the time he was inclined to not care about titles and go
along with whatever his co-authors suggested for a title, not
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realizing that it would make describing the various systems
more complicated in the future. Thus, though structurally
Tor is clearly a third generation of basic design, the title of
this paper would lead one to think otherwise.

The title is also confusing because it refers to a second-
generation onion router, that is an onion-routing network
component through which circuits are built and that for-
wards traffic along those circuits. But the paper is also
about the onion-routing clients, the hidden service design,
the directory system, etc., in other words an entire onion
routing system design. Though onion routers are a cen-
tral part of onion routing, describing them is a small part
of the paper. In addition, by phrasing the title “Tor: The
Second-Generation Onion Router”, we gave an at least im-
plicit impression that ‘Tor’ stood for ‘the onion router’. This
further exacerbated the confusion about the paper’s scope
and focus, but it is also simply incorrect.

When Roger Dingledine began work on onion routing as
part of an NRL project, there were many other onion routing
systems that had been or were being designed, published,
and/or deployed, for example, Freedom [26], Cebolla [§],
and Tarzan [24]. Thus, when he told people he was working
on onion routing, they would ask him which one. He would
respond that it was the onion routing, the original program
of projects from NRL. It was Rachel Greenstadt who noted
to him that this was a nice acronym and gave Tor its name.
Roger then observed that it also works well as a recursive
acronym, ‘Tor’s onion routing’. It was also his decision that
it should be written ‘Tor’ not ‘TOR’. Making it more of an
ordinary word in this way also emphasizes the overlap of
meaning with the German word ‘Tor’, which is gate (as in
a city gate).

To sum up, “Tor: The Second-Generation Onion Router”
is about the design of onion-routing systems, not just onion
routers themselves. Tor is the third generation of onion rout-
ing, not the second. And the ‘r’ in ‘Tor’ represents ‘routing’
not ‘router’. In hindsight we probably should have spent a
bit more time on the paper title.

4.1 Freedom’s just another word for no peel
left to loose

As noted, within a short time after onion routing was
invented, there were several onion routing designs devel-
oped elsewhere than at NRL. A significant contribution that
fed back into NRL onion routing design evolution was Zach
Brown’s Cebolla [8]. As also noted above, perhaps the most
significant discriminator of the third generation NRL onion
routing design from second generation was the introduction
of incremental circuit building via a Diffie-Hellman exchange
between each node in the route and the client over the ex-
isting partially built circuit. The idea for this came from
Cebolla.

The most notable onion routing network prior to Tor in
terms of the scale of its development and deployment was
the Freedom Network from Zero-Knowledge Systems, Inc.
It was publicly announced in late 1998, and a deployed net-
work ran from late 1999 till late 2001. This was a com-
mercial system in which users paid for service. That itself
is not without security implications, which we have already
touched on briefly. (This is not the only commercial onion
routing network that has existed. For example, IronKey has
sold protected flash drives since about 2006, including one
that supports private web browsing through IronKey’s own



onion routing network.) We focus here on Freedom’s net-
work design and protocols. Like the first two generations
of onion routing, the first version of Freedom built a route
using an onion that passed the session keys to each of the
onion routers—called Anonymous Internet Proxies (AIP) in
the Freedom Network [26]. The resulting encryption-layered
route was dubbed a “telescope” by the Freedom designers,
after the nested tube structure of spyglass telescopes.

But Freedom had several important differences from the
NRL designs for onion routing. It transported traffic using
UDP rather than TCP. It used block ciphers since, unlike
NRL onion routing, packets could not be guaranteed to be
in-order. However, since many of the applications it carried
required TCP guarantees, the Freedom client managed its
own TCP stack (similarly for network exit nodes). This re-
quired a kernel modification and thus root access on the com-
puter on which the program ran. A resulting tradeoff was
that this gave Freedom tighter control over making sure that
applications did not bypass the anonymity network than any
of the NRL versions of onion routing except perhaps the redi-
rector mentioned above. Freedom also provided a deployed
pseudonymous mail infrastructure, including standard fea-
tures such as spam control but also nymservers that would
allow one to look up a pseudonym and obtain a reply block
(essentially like the reply onions described above) and send
reply traffic through the Freedom Network to the appropri-
ate pseudonymous recipient. While the first two generations
of NRL onion routing supported SMTP for sending mail and
some sort of integration with reply onions was envisioned,
none was ever fully designed much less deployed.

Probably the most important difference between NRL-
design onion routing and Freedom was the pseudonym sys-
tem. This was not simply to enable replies to email from
Freedom clients, it pervaded the Freedom architecture. The
underlying communications architecture was still an onion
routing system that separated identification from routing
and was thus an anonymity system in that respect, but the
pseudonym system that ran on top of it was central to the
users’ interactions with the whole system. As the design-
ers noted, you should “think of Freedom as a pseudonymity
product, rather than as an anonymity product” [25]. Users
were “encouraged to create pseudonyms (‘nyms’) for each
area of activity in which they want to preserve their pri-
vacy” [7]. Nyms were purchased in a process that prevented
linking of nyms to a given client. Freedom circuits connect-
ing clients to Internet destinations were authenticated at the
exit node via a pseudonymous signature from the client. Any
exit node would be able to link two connections made by a
client using the same nym no matter when those connections
were made. Thus, though the network and routing structure
of Freedom onion routing and NRL-design onion routing are
very similar, the goals are somewhat different. NRL-design
onion routing does not have pseudonyms, but all traffic that
passes over a single circuit can be linked together as coming
from the same unknown client. First generation NRL onion
routing built a new circuit for each HTTP request, which
was in keeping with the way HTTP 1.0 worked. The circuit-
building overhead of that approach is, however, quite high.
Second and third generation onion routing would thus mul-
tiplex several application connections over a single circuit.
By default Tor reuses a circuit for ten minutes, although a
GUI button allows users to rotate to a new circuit at any
time. Still an exit node or collaborating exit nodes in the
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Freedom Network seeing the same pseudonym at any time,
would be able to link these together. Freedom was designed
to prevent system components from linking a pseudonym to
its client, not against pseudonymous profiling by the exit
node or other properties. To the external destination, how-
ever, Freedom did not reveal nyms and thus provided client
anonymity. But, it did not hide HTTP referer fields and
thus permitted that degree of linking even across nyms. If
this was a concern, it was recommended that in the course of
your browsing session you return in between to a homepage
that was a popular web page [25] or simply blank [3].

In the Freedom 2.0 architecture [7] mail reply blocks were
replaced with a different design that was intended to im-
prove capacity, performance, and security. It was, in too
tight a nutshell, a bulletin board system that allowed peo-
ple outside the Freedom system to post messages to a nym
at a POP server. These could then be retrieved by Freedom
clients via anonymous circuits through the network. An-
other important change to Freedom in the 2.0 architecture
was to change to two hops for circuits to the Internet [2].
In Freedom 2.1, this was further reduced to one hop as a
default, with a user setable option for two or three hops
depending on the desired security/performance tradeoff [3].
This has two security implications. First, anonymity is re-
duced to a single point of failure, albeit a less predictable
one in a distributed network like Freedom’s. Also, in the
case of Freedom, it is not just the dissociation of the source
and destination(s) of that particular circuit that is lost; the
association of a nym with a client IP address is also revealed
to a compromised onion router. Second, letting users select
which connections should have more hops automatically par-
titions the usage anonymity set, and it indicates to the exit
node whether the connection is considered sensitive by the
user, hence deserving of closer scrutiny. The designers were
aware of various security implications of these choices but
also recognized the potential for performance improvements
if the number of circuit hops was reduced. These issues were
discussed in the above-cited papers.

5.  WHAT ONION ROUTING

Onion routing separates identification from routing. But
can we describe what protection that provides or tell how
strong that protection is? When the first onion routing pa-
per was submitted, it was taken by at least some reviewers
as an anonymous communications protocol akin to Chaum
mixes and providing the same sort of security. Anonymity
(security of anonymous communication) has since at least
that time been measured by the size and sometimes dis-
tribution on an anonymity set. For protecting a commu-
nications initiator, this would thus reflect the uncertainty
within a given set of who initiated that communication. The
other primary ingredient in defining and measuring security
besides the property being protected is the adversary at-
tempting to undermine that security. For much of the his-
tory of anonymous communication, this has been the global
passive adversary (GPA), one that can observe all messages
everywhere, but cannot alter or delete messages or insert its
own messages. Onion routing is completely broken against
a GPA. It has long been documented that an adversary ob-
serving both ends of a circuit can trivially associate those
ends by means of timing correlation or volume [46, 41]. In
fact, the circuit does not even need to carry any traffic; cir-
cuit setup is enough [5]. To date, no padding or similar



scheme has been devised that will counter any sort of real-
istic adversary (not GPA, but we’ll return to that momen-
tarily) while preserving anything like the latency properties
expected for most applications on onion routing networks.
Work on this remains interesting and worth pursuing [23],
but I am dubious that any practical solution exists.

Mixes, on the other hand, break up communication pat-
terns for messages by introducing delays and reordering.
They are not trivially broken against a GPA. For this rea-
son, it is common to characterize onion routing as less secure
than mixing, if more practical and thus a good engineering
tradeoff. But this is too simple. There are realistic adver-
saries and realistic settings in which an onion routing net-
work is more secure than the comparable mix network that
is essentially the same except for swapping mixes for onion
routers at the network nodes [49]. Another problem with a
GPA that we have described since the early days of onion
routing is that a GPA is both too strong and too weak. It is
too strong because it is unlikely that an adversary can ob-
serve all activity at all places of a large global network. The
adversary may be able to observe a large fraction, but not all
traffic, everywhere, at all times. This could be viewed as a
conservative adversary, as strong or stronger than anything
one will face in practice. But it is also too weak because
it cannot even delay packets anywhere for a nanosecond or
interact with the system by acting as an ordinary user. We
can strengthen the adversary by making it less passive, able
to use the system as an ordinary user and to own some net-
work nodes at which it can do anything computationally
feasible with traffic at that node. This is done in some work
on both mix networks [12] and onion routing networks [51].

More importantly, however, this whole approach to se-
curity misconstrues both adversary model and definition of
security in a way that leads both design and analysis in
the wrong direction. The entropist approach [48] assumes
that an adversary has a known set of entities (for example,
senders if we wish to protect the identity of senders) and
that its goal is to reduce its uncertainty about the sender on
that set.

A good measure of security is the amount of work an ad-
versary must do to break it. If reducing the size of the
anonymity set or improving the chance of guessing the right
sender within it is indicative of the work the adversary must
do, then this is a good measure. And this is indeed true for
systems such as those for voting anonymity, where the goal
is to prevent adversaries from associating individuals from a
known set of registered voters with the votes cast. But that
is not the case for large public onion routing networks. For
example, if I am using Tor and both ends of my circuit go
through adversary controlled or observed onion routers, it
will not matter if there are five other users of the Tor net-
work then or five hundred thousand. And it will not matter
how many of those other users have circuits running through
the same terminal onion routers or not. An adversary might
make use of such numbers. For example, if he could deter-
mine that the network only has a small enough number of
users that it is practical to just identify and attack them
directly to observe their future behavior, then this would be
useful. But directly determining a set and reducing uncer-
tainty within it would be a waste of effort. (I am speaking
generally. There are always exceptional circumstances.) As
noted, a realistic typical attacker will not actually know or
care about this when breaking anonymity on an onion rout-
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ing system. Perhaps we are looking at a set of the wrong
things. An adversary wins if he owns the onion routers at
each end. So perhaps he should care about the number of
onion routers and reducing uncertainty on that set.

First, there are attacks that identify terminal onion routers
themselves for some network sizes and configurations [37].
But, outside of P2P designs, that does not connect the
source client to the destination. It could help determine
where to direct further attacks, but reducing uncertainty on
that set is not itself a good measure of anonymity of system
users.

Where to direct further attack does matter. This is espe-
cially true in the Tor network since 2006, since the deploy-
ment of guard nodes. Since that time, instead of building
a circuit through three randomly chosen onion routers, the
first hop is chosen from a small set (default size three) of
guard nodes that are used by a client as long as they are
available. Why are there guard nodes? We showed in 2005
that an attacker owning a single onion router could find a
hidden server in a matter of minutes by repeatedly making
connections to it until the hidden server’s rendezvous circuit
connected through the attacker’s onion router [41]. (Hidden
servers are briefly described above in section 4.) Because
we wanted to show what could be accomplished owning a
single node in the network, the attack only worked on hid-
den services. We noted that if the adversary owned two or
more onion routers, similar attacks could be carried out on
ordinary Tor connections to public servers. This was later
empirically demonstrated [5]. These attacks were already
known, and guard nodes are a version of the earlier intro-
duced concept of “helper nodes” which were meant to help
resist such attacks for a variety of anonymous communica-
tions protocols, not just onion routing. Though they had
been shown possible, our 2005 analysis of hidden services
was surprising in showing how cheap and efficient they were:
a single adversary node could find a hidden server in just a
few minutes. Thus guards were deployed as a countermea-
sure.

Guard nodes resist attacks that watch for or cause re-
peated circuit formation until an adversary node is chosen
for the first onion router adjacent to the client. Introducing
them also meant that an adversary that identifies a guard
node, e.g., of someone repeatedly visiting a particular web-
site, knows that if he attacks it he will be able to see one end
of a large fraction of the target client’s connections. He still
needs to be able to watch the other end to take advantage
of that. If he owns a destination website and wants to know
who visits it, that part will already be accomplished.

This brings us back to defining and measuring security
for onion routing. The measure of security is the amount of
work an adversary must do to break it. If all nodes in the
network are equally vulnerable to compromise by an adver-
sary, then the number of nodes serves as a good indicator
of the work an adversary must do to attack onion routing
as we have been describing. And this brings us to another
mistake of entropism and the designs it engenders. The
number of nodes in the network is only a good indicator of
the work an adversary must do if they are generally compa-
rable in their vulnerability to compromise. But both designs
and their analyses treat all parts of the network the same.
Tor is a volunteer network. This has much to do with its
growth and viability to the largest by far network for privacy
and traffic analysis resistance [1, 15] and continues a trend



begun in the first generation design with open source of
code and plans for a network controlled by multiple not nec-
essarily mutually-trusting but mutually-collaborating node
providers, and then continued in second generation’s intro-
duction of allowing node operators to choose their own in-
dividual exit policies, etc. But along with this comes an
obvious diversity of how likely an adversary is to desire or
be able to own or observe network nodes. That sort of di-
versity is there for any viable large open network; it should
just be very obvious with Tor. And if the adversary has
a botnet, he could easily, gradually, and stealthily add his
own nodes to the network in wide portions of the geographic
and IP space until he owns a significant fraction of the net-
work and can observe much of the traffic. This means that
the number of nodes tells us little about how resistant onion
routing is to an adversary with more than trivial resources
and skill level.

To deal with botnets or more generally this diversity of
trust in various nodes in the network, we could just stick
to those nodes that we trust, for example, that we run our-
selves. This returns us to the original reason that onion
routing was not deployed as a Navy-only or similarly re-
stricted system. Nodes that are trusted by us may either
be known by external indicators and/or identified through
behavior. This would undermine the protection that onion
routing is meant to provide. So we need a more subtle way
to reason about trust. In our current work, we identify trust
in a node with the complement of the probability that the
node is compromised. We have shown some optimality re-
sults for choosing first and last nodes in an onion routing cir-
cuit against an adversary trying to own both of them [30].
We also have devised and analyzed algorithms for routing
securely even when an adversary might own large portions
of the network and when we might be somewhat inaccurate
in assigning trust to nodes in the network [31]. We intend to
continue to develop this area in various ways, for example,
by incorporating link threats into the model [22, 38, 20].

5.1 Traffic Security and Identity

We must overcome one more vestige of the entropist view
of anonymity: the notion that the paramount thing to pro-
tect is the identification of a specific individual. We have al-
ready noted that the standard (entropist) characterization of
anonymous communications security starts with a given set
of distinct users, messages, source IP addresses, etc. The
goal of a security system is then presented as preventing
identification of the unique one that matches a given com-
munication elsewhere. This communication elsewhere might
be a given message on the other side of a mix or a query or
post at a website. More generally we might wish to merely
resist reduction of uncertainty about which one is the target
individual or about the overall matching of multiple com-
munications with multiple targets. Often, however, this is
simply not what matters. If I am a patent examiner wishing
to hide that I am searching for prior art on someone’s web-
site, I am not trying to prevent him from knowing which
patent examiner or source computer is visiting his site. 1
want to protect that a patent examiner is visiting his site.
Similarly if I am using the Internet while traveling and wish
to protect my U.S. Government affiliation from local net-
work observers, I am primarily concerned with that. I may
not care if he learns specific IP addresses I contact. What I
do not want him to do is recognize my affiliation. He could
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do this if, e.g., a large fraction of my traffic appears most
likely headed to .mil or .gov parts of IP space. He may not
know any specific IP addresses, and that may not matter
to him or be of secondary importance. It is true that an
adversary who can disambiguate individual users or source
addresses, and who has the appropriate ancillary informa-
tion, might use this to help him achieve his primary goal.
But it is not itself always his primary goal. Sometimes it is,
but not always. The entropist view tries to fit all anonymous
communication into this procrustean metric.

If protecting identity is sometimes about hiding associ-
ation with a property that is possibly shared with many
others, what about when a property to be protected is itself
that you are trying to obtain such protection? Onion rout-
ing can hide your ultimate destination from a local observer,
but as described so far it does not hide that you are using
an onion routing network. The relays in the Tor network
are publicly listed in directories. This allows Tor clients
to gather the information needed to build circuits. It also
means that someone who runs a website and does not want
to allow access to it from the Tor network has an easy means
to do so. There is even a script made publicly available by
the Tor Project to facilitate this. Blocking typically does
not have the intended effect; it usually only prevents access
by the honest because the dishonest have many less salient
ways of access available to them. For this reason blocking
is discouraged; however, if someone wants to block access to
his server from Tor, he can do so. But this also means that
one can block access to the Tor network.

Many people use Tor to access search engines, such as
Google, so that they can see the results that one would get in
a different location. (Search results are in part determined
by the IP address of a request. Tor user’s are sometimes
surprised the first time a search engine homepage loads for
them in a different language.) And some search engines, me-
dia outlets, or other destinations are blocked or filtered by
national or other jurisdictional firewalls. If people use Tor
to obtain unfettered access to the Internet, the adversary
may block access to the public Tor network itself. Separat-
ing identification from routing may then need to be applied
to itself. How can we separate identification as onion rout-
ing communication from routing to and through an onion
routing network?

The Tor network uses bridges. These are onion routers
that provide access to the rest of the Tor network but are not
themselves publicly listed. A major goal is to help unknown
individuals behind such firewalls and filters to access the
public Tor network in this way—which creates a new prob-
lem. How do you tell these people about the bridges without
also telling those who want to block them and thus letting
the bridges get blocked too? There are various strategies
that we only have space to touch on here, such as trickling
out the bridge addresses through a limited resource (such as
to email requests from accounts with an email provider that
does not make it trivial to sign up for numerous accounts),
or rapidly rotating bridge addresses through a portion of IP
space that an adversary does not want to permanently leave
blocked [16, 14]. It also becomes important that traffic to
and from the Tor network, even via bridges, is not trivially
separable by some aspect of the connection protocol or of the
communication patterns. An example of very recent work
on blocking resistance via Tor bridges is BridgeSPA [47].



6.

CONCLUSION

Why, you old soothsayer-humbug!

no Kaiser are you; you are nought but an onion.
I’'m going to peel you now, my good Peer!

You won’t escape either by begging or howling.

What an enormous number of swathings!
Isn’t the kernel soon coming to light?

I'm blest if it is! To the innermost centre,
it’s nothing but swathings-each smaller and smaller.
Nature is witty!

A queer enough business, the whole concern!

Life, as they say, plays with cards up its sleeve;

but when one snatches at them, they’ve disappeared,
and one grips something else, or else nothing at all.

—Henrik Ibsen, Peer Gynt, Act. V, Scene 5

In this paper, we have discussed some of the why, who,
how, which, and what of onion routing (also some of the
when, although that was scattered throughout). Onion rout-
ing has grown as both a research area and an applied solution
to many real problems over the last decade and a half. We
have barely scratched the outermost layer of many of its as-
pects in this paper and not touched others at all. If you now
have the motivation to explore more deeply, I hope that un-
like Peer Gynt in his introspection, you will find something
of substance in the process.
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