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The Concept of CAPTCHASs

® Completely Automated Public Turing Tests to Tell Computers and

Humans Apart
AmOS

} [~
fType the text | Fra ( me CAPTCHA
Privacy & Terms 2]

Example of Google’s image-based CAPTCHA scheme.
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B Distinguish humans from computers to limit or even prevent the abuse
in Internet services, e.g.,

e automated account creation for sending spam mail.




The Concept of CAPTCHASs E

® Completely Automated Public Turing Tests to Tell Computers and

Humans Apart
AmoS sy

} ~
[Type the text | ol ‘ e CAPTCHA
Privacy & Terms (2]

Example of Google’s image-based CAPTCHA scheme.

B Distinguish humans from computers to limit or even prevent the abuse
in Internet services, e.g.,

e automated account creation for sending spam mail.

B CAPTCHASs should be easy to solve by humans but difficult to break
by computers.
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Acoustic CAPTCHASs

B Acoustic CAPTCHAs are beneficial for
e visually impaired people,
e hands-free operation,
e non-graphical devices.

~

w
[Type what you hear | [T ( we:CAPTCHA

Privacy & Terms (2]

Example of Google’s audio-based CAPTCHA scheme.
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Usability and Security of CAPTCHAS

®m Breaking CAPTCHAS represents a machine learning problem.
B A CAPTCHA is said to be broken if the success rate for automatic
solving exceeds
e 5%[1], 1%][2], 0.01% [3],

[1] J. Tam et al., “Breaking Audio CAPTCHAs," NIPS 2008.
[2] E. Bursztein et al., “The Failure of Noise-Based Non-Continuous Audio Captchas,” S&P 2011.
[3] K. Chellapilla et al., “Building segmentation based humanfriendly Human Interactive Proofs,” HIP2005.
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Usability and Security of CAPTCHAS

®m Breaking CAPTCHAS represents a machine learning problem.
B A CAPTCHA is said to be broken if the success rate for automatic
solving exceeds
e 5%[1], 1%][2], 0.01% [3],
B “For good usability the human success rate should approach 90 %.” [3]
l Moving target

Unsolvable by todays Unsolvable by
computers but solvable humans
by humans

Solvable by
Computers

Increasing HIP
Sweet spot difficulty

An ideal distribution of
HIPs

Regions of feasibility as a function of HIP difficulty for humans and computers algorithms. [3]

[1] J. Tam et al., “Breaking Audio CAPTCHAs," NIPS 2008.
[2] E. Bursztein et al., “The Failure of Noise-Based Non-Continuous Audio Captchas,” S&P 2011.
[3] K. Chellapilla et al., “Building segmentation based humanfriendly Human Interactive Proofs,” HIP2005.
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Attacks on Acoustic CAPTCHAS

B Most previous attacks (e.g., [1,2]) are based on a two-stage approach:

Features Labels
A - 4>

Segmentation Classification

) 5 10 15 20 25
Time [s]

[1] E. Bursztein et al., “The Failure of Noise-Based Non-Continuous Audio Captchas,” S&P 2011.
[2] J. Tam et al., “Breaking Audio CAPTCHASs," NIPS 2008.
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Attacks on Acoustic CAPTCHAS

B Most previous attacks (e.g., [1,2]) are based on a two-stage approach:

1. Computation of short-time signal energy and identification of
peaks that exceed a specific energy threshold.

Signal Segmentation Features Classification Labels
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[1] E. Bursztein et al., “The Failure of Noise-Based Non-Continuous Audio Captchas,” S&P 2011.
[2] J. Tam et al., “Breaking Audio CAPTCHASs," NIPS 2008.
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Attacks on Acoustic CAPTCHAS

B Most previous attacks (e.g., [1,2]) are based on a two-stage approach:

1. Computation of short-time signal energy and identification of
peaks that exceed a specific energy threshold.
= Energy peaks are used for signal segmentation.

M» Segmentation Features Classification ﬂ»

Amplitude

) 5 10 15 20
Time [s]

[1] E. Bursztein et al., “The Failure of Noise-Based Non-Continuous Audio Captchas,” S&P 2011.
[2] J. Tam et al., “Breaking Audio CAPTCHASs," NIPS 2008.
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Attacks on Acoustic CAPTCHAS

B Most previous attacks (e.g., [1,2]) are based on a two-stage approach:
1. Computation of short-time signal energy and identification of
peaks that exceed a specific energy threshold.

= Energy peaks are used for signal segmentation.
2. Classification (Least Squares, SVMs) of isolated word segments.

Features e a Labels
» Classification ———

Signal
——>

Segmentation

Amplitude

Time [s]

[1] E. Bursztein et al., “The Failure of Noise-Based Non-Continuous Audio Captchas,” S&P 2011.
[2] J. Tam et al., “Breaking Audio CAPTCHASs," NIPS 2008.
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CAPTCHA Solver

We use a hidden Markov model (HMM) based recognizer?.

Each word is modeled by an HMM that has 3 emitting states per
phoneme and exhibits a left-to-right topology without state skips.

The speech pauses (i.e., silence/noise) are represented by an
additional model that has 3 emitting states and allows backward
transitions and skips between the first and the last state.

The state emission probabilities are represented by a Gaussian
mixture model (GMM) having 8 mixture components.

The features are given by 39-dimensional perceptual linear prediction
(PLP) coefficients including their first and second order derivatives.

Each feature vector corresponds to a window length of 25 ms of the
audio signal.

1S. Young, “The HTK Hidden Markov Model Toolkit: Design and Philosophy;” Entropic

Cambridge Research Laboratory, Ltd, 1994.
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Usability & Security of reCAPTCHA
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reCAPTCHA

Example: “314-694-5279”
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B The words are given by digits

between “0” and “9”.

The digits are spoken in a
block-wise manner.

The number of digits is varied
between 6 and 12.

Some of the digits are
overlapping in time.

The speech is synthetic and
consists of a single female voice.

The overall voice quality is
comparatively low.

All signals exhibit the same
stationary background noise.

13



example_recaptcha_2013_hard_20131202_101816.wav
Media File (audio/wav)


Downloading CAPTCHASs

\Tv ne what you hear ‘

Submit

1 ~ 2000 signals
‘ re CAPTCHA"
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Obtaining Transcriptions

\Tv ne what you hear ‘

1 ~ 2000 signals
| @PTCHA'
I 4 x 250 signals
! (3] \ O \ (3] \ 3]
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Training the Speech Recognizer

P 1]
[Type what you hear |
1 ~ 2000 signals

443 blocks
= HMM-based speech recognizer
1500 digits

- GO
\:6.:\ 22‘:@“1'3 © \ (4}

16
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Security Analysis

)
Download sound ss MP3 ~ 11000 signals —_—

[Type what you hear ] re CAPTCHA
C

1 ~ 2000 signals N

_—— 443 blocks

< ) = HMM-based speech recognizer
— 1500 digits
‘ re CAPTCHA

I 4 x 250 signals

O 10 10 10

17



RUHR-UNIVERSITAT BOCHUM

Assessing Human Usability

)
Downlosd sound s MP2 ~ 11000 Signals _—
[Type what you hear | re CAPTCHA™
C
1 ~ 2000 signals =
__——— 443 Dlocks
C ) = HMM-based speech recognizer
* 1500 digits
‘ Rre CAPTCHA"

4 x 250 signals 500 signals

!6 !0 !O !0

Aa

18
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B |nter-labeler agreement (training corpus):

# Agreements
1 (No) 2 3 4 (All)
Digit blocks 11.20% 29.73% 31.87% 27.20%

Full transcription 49.20% 36.00% 10.00% 4.80%
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# Agreements
1 (No) 2 3 4 (All)
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Full transcription 49.20% 36.00% 10.00% 4.80%

[ |
B Human success rate (listening test): 24 % (o0 =17.35 %).
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Analysis Results

B |nter-labeler agreement (training corpus):

# Agreements
1 (No) 2 3 4 (All)

Digit blocks 11.20% 29.73% 31.87% 27.20%
Full transcription 49.20% 36.00% 10.00% 4.80%

[ |
B Human success rate (listening test): 24 % (o0 =17.35 %).
B Previous attacks:

Authors Method Success rate
Bursztein et al. [1] Classification 1.5%
Sano et al. [2] Speech recognition 52 %

[1] E. Bursztein et al., “The Failure of Noise-Based Non-Continuous Audio Captchas,” S&P 2011.
[2] S. Sano, et al., “Solving Google’s Continuous Audio CAPTCHA with HMM-Based Automatic Speech

Recognition,” Advances in Information and Computer Security, Springer, 2013.
19



Outline

Perceptually Motivated CAPTCHA Design

RUHR-UNIVERSITAT BOCHUM @

20



Proposed CAPTCHA
Example: “01-64-75-36"
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B The words are given by digits

between “0” and “9".
= Fair comparison, usability.

Real speech recordings from
different speakers (m/f).

Two consecutive words are
overlapping in time.

Non-stationary background
noise , scaled such that the
signal energy is constant.

= Prevent isolation of words.
= Confuse speech recognizers.

Artificial reverberation

= Automatic speech recognition
is more challenging.

= Intelligibility remains good.

21



example_own_captcha_01647536_babble_rev100.wav
Media File (audio/wav)


Creating CAPTCHAs 1/2 @

m Signal generation is based on a subset of the TIDIGITS speech
corpus.

¢ Single-digit recordings of 25 male and 25 female speakers,
corresponding to 1000 individual digits.
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m Signal generation is based on a subset of the TIDIGITS speech
corpus.

¢ Single-digit recordings of 25 male and 25 female speakers,
corresponding to 1000 individual digits.

B Random digits are chosen from the database, alternating male and
female speakers.
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m Signal generation is based on a subset of the TIDIGITS speech
corpus.

¢ Single-digit recordings of 25 male and 25 female speakers,
corresponding to 1000 individual digits.

B Random digits are chosen from the database, alternating male and
female speakers.

B Two consecutive digits are superimposed in time.
e The superposition of digits is based on their short-time power.
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m Signal generation is based on a subset of the TIDIGITS speech
corpus.

¢ Single-digit recordings of 25 male and 25 female speakers,
corresponding to 1000 individual digits.

B Random digits are chosen from the database, alternating male and
female speakers.

B Two consecutive digits are superimposed in time.
e The superposition of digits is based on their short-time power.

B The number of digit blocks per CAPTCHA is varied between 4-5 (8-10
digits per CAPTCHA).
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Creating CAPTCHAs 1/2 @

m Signal generation is based on a subset of the TIDIGITS speech
corpus.

¢ Single-digit recordings of 25 male and 25 female speakers,
corresponding to 1000 individual digits.

B Random digits are chosen from the database, alternating male and
female speakers.

B Two consecutive digits are superimposed in time.
e The superposition of digits is based on their short-time power.

B The number of digit blocks per CAPTCHA is varied between 4-5 (8-10
digits per CAPTCHA).

m All digit blocks are separated by speech pauses of random length.

22



Creating CAPTCHAs 2/2 @

m All speech pauses are superimposed by a multi-talker babble noise.

e The noise signal is scaled such that the the short-time energy of
the resulting signal is somewhat constant over time.

23
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m All speech pauses are superimposed by a multi-talker babble noise.

e The noise signal is scaled such that the the short-time energy of
the resulting signal is somewhat constant over time.

B The mixture signal is reverberated by a randomly generated impulse
response:

y(t) = 2(t) * h(t)
x(t) * (w(t)e*t/T)

w(t): white Gaussian noise (random) 7: decay time (fixed)

23



Creating CAPTCHAs 2/2 @

m All speech pauses are superimposed by a multi-talker babble noise.

e The noise signal is scaled such that the the short-time energy of
the resulting signal is somewhat constant over time.

B The mixture signal is reverberated by a randomly generated impulse
response:

x(t) * h(t)
x(t) * (w(t)e*t/T)

y(t)

w(t): white Gaussian noise (random) 7: decay time (fixed)

® We create and compare CAPTCHAs for two different decay times, i.e.,
o 7 =T50 =100 ms,
o 7 =Tgy =300 ms.

23



Analysis Results

Speech recognition results (Attack):

# Train T [ms] Sent. [%] Word [%]
200 0 15.86 77.03
200 100 5.33 64.49
200 300 1.25 56.11
400 0 17.42 78.38
400 100 5.06 65.32
400 300 2.34 60.20
800 0 20.38 79.71
800 100 6.87 67.21
800 300 3.14 62.88

1600 0 26.43 82.43
1600 100 6.26 67.37
1600 300 4.11 64.66

B All scores are based on 10,000 CAPTCHAs
(sentences), corresponding to 90,140 words.

RUHR-UNIVERSITAT BOCHUM
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Analysis Results

Speech recognition results (Attack):

RUHR-UNIVERSITAT BOCHUM

Listening test results:

# Train T [ms] Sent. [%] Word [%] Sent. [%] Word [%]
200 0 15.86 77.03 L 56.38 91.74
200 100 5.33 64.49 o 21.47 7.18
200 300 1.25 56.11

Teo = 100 ms

400 0 17.42 78.38

400 100 5.06 65.32 Sent. [%] Word [%]

400 300 2.34 60.20

800 0 20.38 79.71 " i;gé sg.gg

800 100 6.87 67.21 i i

800 300 3.14 62.88 Teo = 300 ms
1600 0 26.43 82.43 M The results were obtained from
1600 100 6.26 67.37 16 individual participants for
1600 300 411 64.66 each reverberation time.

B All scores are based on 10,000 CAPTCHAs
(sentences), corresponding to 90,140 words.

B The scores correspond to 800
CAPTCHAs (sentences) and
7,280 words.

24
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Conclusions

reCAPTCHA vs. Proposed Scheme:
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ASR Human

Proposed CAPTCHA (T5p = 100 ms)
reCAPTCHA (as of March 2014)

533% 56.38%
62.8% 24.40%

26
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B Conservative CAPTCHAs can potentially be learned by machines at a
relatively low cost.

Conclusions

m Increased CAPTCHA security (using signal distortions) comes at the
cost of lower human pass rates.

27
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Conclusions

B Conservative CAPTCHAs can potentially be learned by machines at a
relatively low cost.

m Increased CAPTCHA security (using signal distortions) comes at the
cost of lower human pass rates.

® We assume that the theoretical sweet-spot, i.e.,

¢ high success rates for humans (> 90 %),
¢ low success rates for machines (< 1% or even < 0.01 %).

can not be achieved by using conventional methods.
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Conclusions

B Conservative CAPTCHAs can potentially be learned by machines at a
relatively low cost.

m Increased CAPTCHA security (using signal distortions) comes at the
cost of lower human pass rates.

® We assume that the theoretical sweet-spot, i.e.,

¢ high success rates for humans (> 90 %),
¢ low success rates for machines (< 1% or even < 0.01 %).

can not be achieved by using conventional methods.

B |t is necessary to investigate into more sophisticated CAPTCHAS, e.g.,

e CAPTCHAs that are based on context-dependent questions,
requiring intelligence and/or previous knowledge

27
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Thank you!

Questions?
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Winograd Schemas

Example 1:

Question: The trophy doesn't fit into the brown suitcase because it's
too [small/large]. What is too [small/large]?

Answer: The [suitcase/the trophy].

29



Winograd Schemas @

Example 1:

Question:

Answer:

Example 2:

Questions:

Answer:

The trophy doesn't fit into the brown suitcase because it's
too [small/large]. What is too [small/large]?

The [suitcase/the trophy].

The man couldn't lift his son because he was so
[weak/heavy]. Who was [weak/heavy]?

The [man/the son].

29
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Creating Digit Blocks

(a) 1st digit (b) 2nd digit
30 30
20 20
£ £

=10 10

0 - 0 -

0 10 20 30 0 10 20 30
m m

(c) Digit block

pi2(m)

30
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Metrics
Word Acc. = 100 - W_WD_WI_WS,
%1%
Sent. Acc. = 100 - &,
5]
W Number of words
Wp: Word deletions
Wr:  Word insertions
Ws:  Word substitutions
S Number of sentences
Sc: Number of correctly transcribed sentences

31
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Introduction of Hidden Markov Models

a;;:  State transition probabilities
b;:  output probabilities

o: observations (features)

m;:  initial state probabilities

Example of an HMM

B The HMM consists of states and links.

e Each link allows a transition between two states.

e An observation is generated with a stochastic transition from one
state to another.

e Each observation o is one of the symbols in V = {v; ... vk }

® The complete HMM is defined by the parameter set A = (A, B, IT).

85



The Three Basic Problems for HMMs @

1. Given the observation sequence O = 0; 05 ... o7 and the model ),

how to compute
P(O|N) ?

2. Given the observation sequence O = 0; 0> . .. o7 and the model ),
how to choose a corresponding state sequence Q = ¢1q2 - - - qr, i.€.,

Q" = argmax P(Q|O, \)
Q

that best explains the observations? — “Recognition”

3. How to adjust A = (A, B, IT) to maximize P(O|\) (maximum likelihood
estimation)? — “Training”

AvL = argmax P(O|))
A

34



Problem 1 - Computation of P(O|)) E

B Naive approach: enumerate every possible state sequence

7
P(0|Q, ) HP 0¢|q:, \) (statistical independent observations)

= bfh (Ol)qu (02) U b(IT (OT)

P(Qp‘) = Tq1Qq192Qq2q5 * "~ Aqr_1qr

A=) POIQ)P@QN)
vQ
= Z Tg, blh (Ol)a‘lhqz qu (02) e G“QT—IQTbQT (OT)

q1,92,---,9T

m Computational infeasible due to 27’ N calculations.

35



Problem 1 - Computation of P(O|)) @

m More efficient approach: forward-backward procedure
ay(i) = P(0109 - - - 04, gt = S;|A) (forward variables)

1. Initialization

2. Recursion
apy1(g lzat a1j‘| i(0441), 1<t<T-1, 1<j<N
3. Termination
N
P(O|)) = > ar(i) (terminal forward variables)
=1

m N2T calculations, rather than 27'N ™ as for the naive approach.

36



RUHR-UNIVERSITAT BOCHUM

Problem 1 - Computation of P(O|))

® Backward procedure:

Bi(i) = P(0t+10142 - - - o1, gt = S;|A\) (backward variables)

1. Initialization

2. Recursion

N
51&(7;):Zaijbj(0t+1)5t+1(j)7 t:T_la"'71; 1§Z§N
=i

m N2T calculations

37
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B Maximize the expected number of correct individual states.
B Probability of being in state S; at time ¢, given O and A:

7:(i) = P(gq: = Si|O, A)

Problem 2 - Optimal State Sequence

B Find Q* = argmax P(Q|O, \).
Q

:at(i)ﬁt(i)

P(O[N)

_ au(®B(i) Y z-:l)
S ()Bes)’ (;%()

B The most likely state ¢; at time ¢ is then given by

g; = argmax {v. (i)}, 1<t<T.
1<i<N

® How to find the single best state sequence?

38



Viterbi Algorithm @

® Note that Q@* = argmax P(Q|O, \) = argmax P(Q, O|)\)
Q Q
m Define a score along a single path at time ¢ that ends in state S;:

5t(l) = max P(CHQQ...qt = 7;,0102...0t|A)
q1,92;,---,qt—1

1. Initialization (1 < i < N):
51(7,) = 7T1'b1'(01) Wl(l) =0
2. Recursion (2 <t<T,1<j < N):

0u(7) = (max 6i1(i)ai;) bj(or)  i(j) = argmaxdi_sa,

i=1...N
3. Termination:
P*(01...07|\) = max 07 (i) ¢ = argmax 07 (i)
i=1..N i=1...N

4. Path backtracking: ¢; = ¥y 1(qfy ), t=7—-1,---,1.

39



Problem 3 - Adjust the Model Parameters A @

B There is no known way to analytically solve for the model, which
maximizes the probability of the observation sequence.

® Choose )\ = (A, B, IT) such that P(O|)) is (locally) maximized.

Expectation maximization (EM) algorithm

B General method (not only for HMMS).
m Start with some \°.
B |teratively compute:
1. F(A\ A1) i= Eg [log P(O,Q[A) | O, A'~1] (E-step)
2. A\t = argmax, F(\, \'=1) (M-step)
B An increase of F' provably increases the likelihood P(O|\).
®m Provably converges to a local maximum of P(O|\).

B For estimating HMM parameters, an instance of the EM algorithm is
used, namely the Baum-Welch algorithm.

40



Baum-Welch Algorithm @

B Probability of being in state S; at time ¢, state S; at time ¢ + 1, given O and A:
§t(i,7) = P(gt = Si, ge+1 = S;|0, \)
~ (9)aighj (Or1)Beva () a4(3)aizb; (Ot+1)Be+1(5)
- P(O|N) Y Sty au(D)aib; (1) Ber ()

B Express ~:(z) in terms of &(z, j):
N
() =D &, 4)
j=1
Reestimation formulae:
T—1
. ’Y
Z gt(laj) Z !

Gy = ———  by(k) = i = 71(4)

T
> () Z
t=1 t=1

41
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R expected # of transitions from state S; to S
A;i, = T
& expected # of transitions from state S;

Baum-Welch Algorithm

B»(k) _expected # of times being in state S; and observing symbol vy,
S expected # of times being in state S

7; = expected # of times being in state S; attime ¢t = 1

42
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Using HMMs for Speech Recognition

B Represent each word or phoneme by an individual HMM.
B A common model topology is a left-to-right model (possibly with skips).

B The output probabilities b,(o) are modeled by using continuous density
multivariate distributions, e.g., Gaussian mixture models (GMMs):

chq O|H‘rc qu )7 (1)

Z chg=1 V. 2)
k=1

43



RUHR-UNIVERSITAT BOCHUM @

1. Segmentation of the input signal into
(overlapping) frames
¢ Typical frame lengths ~ 25 ms
e Overlap between
frames ~ 50-75 %

2. Extraction of features for each frame,
L “*N M W »M o — e.g.,

e Mel Frequency Cepstral
Coefficients (MFCC),

e Perceptual Linear Prediction
(PLP),

e Considering dynamics by
incorporating 1st and 2nd order
derivatives (A, AA).

Extracting Feature Vectors

44
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Feature Extraction (MFCCs)

1. Compute the short-time Fourier transform (STFT) for each frame:

L—1 ;
X(m,n) =Y a(mR+i)h(i)e T E"
=0

2. Warp spectral components onto the Mel scale:

1

Mel spectral coefficients m

3. Apply the discrete cosine transform to the log-Mel spectrum:

L'—1
- A . |
X(m,c) = mZ:oln (X(m,m)) cos [? <m+ 5) c} .
4. Observation vector: o; = [X(m,0) X(m,1) --- X(m,L — mT_

45



RUHR-UNIVERSITAT BOCHUM @

B Reestimation algorithm, e.g., Baum-Welch, remains unchanged by
using sentences, i.e., sequences of words, for training.

Training using Sentences

1. For training, the corresponding transcriptions for each sentence
(“labels™) have to be known.

2. The respective models for each sentence are concatenated,
which results in a larger HMM.

3. The resulting larger HMM is trained by using the Baum-Welch
reestimation procedure.
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B Combine individual word models into compound HMM.
e Adjust the compound HMM to the underlying grammar, e.g.:
<"one” or “two” or “three” or ... or “silence”>

Recognition of Continuous Speech

non-emitting
state

,,silence“" .
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