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ABSTRACT
Zipr is a tool for static binary rewriting, first published in 2016. Zipr
was engineered to support arbitrary program modification with an
emphasis on low overhead, robustness, and flexibility to perform
security enhancements and instrumentation. Originally targeted to
Linux x86-32 binaries, Zipr now supports 32- and 64-bit binaries for
X86, ARM, and MIPS architectures, as well as preliminary support
for Windows programs.

These features have helped Zipr make a dramatic impact on
research. It was first used in the DARPA Cyber Grand Challenge
to take second place overall, with the best security score of any
participant, Zipr has now been used in a variety of research areas
by both the original authors as well as third parties. Zipr has also
led to publications in artificial diversity, program instrumentation,
program repair, fuzzing, autonomous vehicle security, research
computing security, as well as directly contributing to two student
dissertations. The open-source repository has accepted accepted
patches from several external authors, demonstrating the impact
of Zipr beyond the original authors.

CCS CONCEPTS
• Software and its engineering → Software maintenance tools;
Translator writing systems and compiler generators; • Security and
privacy→ Software reverse engineering.
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1 INTRODUCTION
The impetus for creating Zipr was the need to apply many patches
to arbitrary binaries efficiently. We had a static analysis system
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for binaries that could identify potential buffer overflows and rec-
ommend patches, and we needed to determine the runtime costs
of applying the patches. While we had access to dynamic binary
translators, runtime and memory overheads were not appropriate
for the embedded systems we were targeting. [21, 43, 44] At the
time, there were two flavors of static binary rewriters: Ones that
kept a copy of the original program text to deal with disassembly
errors and ones that overwrote the code to be instrumented with a
trampoline to an unused address to execute the instrumented code
snippet, then return to the original code to continue execution.

Keeping a full second copy of the program was untenable for
embedded systems. Further, we knew that our static analyzer likely
had many false positives (as static analyzers tend to do), so we
did not want our instrumentation to suffer from the cache, branch
predictor, and memory penalty overheads of frequent trampolining
inside time-critical kernel loops. We needed a rewriting system
suitable for embedded systems, and nothing available met the re-
quirements: 1) low overhead (in terms of memory and performance),
2) robust for a large range of common programs, and 3) the ability
to cheaply invoke arbitrary instrumentation for any instruction
in the program. Of course, these features are desirable in most
environments but absolutely necessary for embedded systems.

We realized that instead of trampolining for patched instructions,
we could trampoline only the (comparatively infrequent) indirect
branch instruction targets. This approach allows instrumentation of
any instruction. Zipr works by putting a trampoline at each indirect
branch target, and then places the remaining code blocks around
these trampolines. To save space, Zipr lays out blocks between
trampolines with a best-fit algorithm, and often simply replaces
the trampoline with the correct code, avoiding any overhead at all.

The primary publications describing Zipr were published in 2016
and 2017 [7, 12, 15, 20]. The open source release [32] occurred in
2019 after a dependency on a commercial software package, IDA
Pro [8], was eliminated. Zipr has since been extended for multiple
platforms and demonstrated effective, robust binary rewriting. Sec-
tion 2 discusses the Zipr artifact’s current release, while Section 3
describes the impacts that Zipr has made in artificial diversity,
program instrumentation, program repair, fuzzing, autonomous
vehicle security, research computing security, as well as directly
contributing to two student dissertations and numerous papers in
key areas of security and privacy.

2 THE ZIPR ARTIFACT
Zipr Architecture. The Zipr architecture includes a front end that

parses binary programs and lifts it into a low-level Zipr interme-
diate representation (IR). This IR is stored in a database we call
the IRDB. The front end detects instructions, functions, data ob-
jects, indirect branch targets, and stack unwinding information
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(also called exception handling (EH) tables) and deposits this infor-
mation in the IRDB. The IRDB contains information about control
transfers, data object locations, and whether the IR is complete
enough to unpin a data object or instruction, etc. One key feature
of the IRDB storage mechanism is that it allows for uncertain and
conflicting information. For example, our disassembly technique
allows multiple disassemblers to union their results. Infrequently,
disassemblers disagree on the correct interpretation of a sequence
of bytes. The IRDB stores both representations in the IRDB, and
ultimately, both interpretations will end up in the final program
(assuming no user-specified transformations remove them). While
only one interpretation is correct, the program semantics will be
preserved because only one of them will ever execute dynamically.
The incorrect sequence will result in extra memory and disk space
usage, but will not affect correctness.

After building the IR, the user can select one or more composable
transformations to the IR. To ease the task of writing transforma-
tions, Zipr provides an SDK for reading, writing, and modifying
the IRDB. [33] The current SDK is written for C++ programming,
but it has always been envisioned that one could directly modify
the IRDB using SQL or write interfaces for other languages.

Besides direct access to any program item, we recognized that
many transformations would want to analyze the program in some
way before making a transformation. To facilitate this approach,
the SDK provides common analysis techniques, such as the ability
to create a control flow graph (CFG) for a function; the dominator
graph for the CFG, a call graph of functions in the IR; the dead
registers at each program point; and the disassembly and set/used
registers for each instruction. While the set of analyses is by no
means complete, the SDK is easily extendable by writing a new
transformation and compiling it into a dynamically-linked library
that others can reuse.

To help potential users write Zipr transformations, we have
provided a variety of example transformations:

• An IRDB Cookbook [35] with well-documented transforma-
tions provides documentation on writing a plugin and includes
three example plugins. initialize_stack inserts code at the
beginning of every function to zero-initialize the stack, pre-
venting exploits relating to uninitialized stack variables. This
example shows how to iterate over functions, inspect a func-
tion’s stack frame, and insert instrumentation. kill_deads
runs the IRDB SDK’s dead register analysis and inserts a set
for every dead register detected at every instruction in the
program. This example shows how to invoke IRDB SDK anal-
yses and act on the results, while simultaneously being a sur-
prisingly effective test of the analysis results. stack_stamp
modifies function entry and exit code to XOR the program’s
return address with a randomly selected value. Besides being
a potential security enhancement, this example shows how to
iterate over functions and modify each function’s entry and
exit points.

• Zafl is an instrumentation pass built on Zipr and the IRDB
SDK to instrument a program with AFL-style instrumenta-
tion. [9, 36, 39, 47]. Zafl yields an instrumented program that
is statistically similar to a program with compiler-inserted
instrumentation in terms of bug-finding abilities.

• The p1transform transformation randomizes the amount of
stack space each function uses, providing an example of how
to modify stack frames for a given function and providing
artificial diversity for the transformed program. [30]

After completing the (possibly empty) list of user-specified trans-
formations, Zipr invokes the back end to reconstitute the IR directly
into an executable program. As we recognized that users may want
to control the final layout of the program, a second SDK is provided,
the Zipr Backend SDK. [31] The primary purpose of this SDK is
to allow plugins to the reconstitution engine to allow the user to
control basic block placement, and apply user-specified relocations.
A Zipr relocation is analogous to a linker relocation in the compiler
world. Built-in relocations for changing, for example, a data item
to point at an instruction, are included. The Selective CFI trans-
formation [34] demonstrates how to use the Zipr Backend SDK
(described below) to place executable or not-executable nonces in
the code to implement a highly effective version of CFI directly on
binary programs.

To facilitate quick adoption by new users, the Zephyr Gitlab
repository includes docker images with pre-built Zipr installations,
ready to run with a single command.

Zipr Platforms. Zipr’s most robust architecture is the x86/64
Linux platform. This platform supports all common compilers
(gcc/g++, icx, clang/clang++ and the obfuscating LLVM compiler,
OLLVM). [4, 11, 24, 25], all common compiler optimization levels
and flags ( -O0, -O1, -O2, -O3, -Os, -Ofast, -fomit-frame-pointer,
-static, -fPIC -fPID -pie, etc.), and most languages that are com-
monly compiled (C, C++, Fortran, Ada, Rust, including variants
of said languages such as C++11, C++17, Fortran99, etc.) Notably
missing is GoLang support due to a currently undiagnosed race
condition with the GoLang custom exception handling format. Both
static and dynamically linked programs and shared libraries are
supported. The platform’s robustness is demonstrated in our test
suite for Zipr testing, which contains thousands of binaries gener-
ated from programs used in industry. [19] X86/32 code, though the
first target of Zipr, has yet to achieve as much attention as we have
had fewer partners working with that code base.

The next most supported platform is 32-bit ARM on Linux. We
have automated regular regressions for coreutils and several other
programs used in common software deployments. [18] While there
are known bugs, many large programs work and demonstrate the
approach’s feasibility for this platform.

We also have preliminary support for 64-bit ARM code and 32-
and 64-bit MIPS code on the Linux platform. While we do not yet
have a robust test suite with widely-used programs, a variety of
coreutils programs have demonstrated successful transformations.
Preliminary support is also available for Windows 32- and 64-bit
executables.

3 ZIPR IMPACTS
3.1 Commercial Adoption

GrammaTech. GrammaTech was one of the first commercial
adopters of the Zipr technology with the authors’ collaboration.
GrammaTech concluded that Zipr was a good fit for their entry
into the DARPA Cyber Grand Challenge (CGC). CGC was a fully-
autonomous capture the flag (CTF) competition. Each team built
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a Cyber Reasoning System (CRS), and the CRSes competed to au-
tonomously protect their (vulnerable) services and exploit vulnera-
bilities in competitors’ services. A CRS scored points for success-
fully defending against an exploit, but was harshly penalized for
increases in runtime, on-disk space, or memory usage. Thus, Zipr
was a natural fit due to its low runtime overhead, minimal on-disk
expansion, and modest memory footprint. [41]

The primary defensive mechanism was a control flow integrity
(CFI) implementation [1, 2], which is now open source. [34] The CFI
implementation, dubbed Selective CFI, leveraged the IRDB analyses
to detect indirect branches that were safe from exploitation, and
elide expensive instrumentation in those cases to help minimize
scoring penalties for using excess resources. Zipr and the Selective
CFI implementation achieved the #1 score for defeating exploits
created by the other competitors.

Later, Zipr’s exception handling parser [20] was adopted by
GrammaTech. They were able to re-use Zipr’s libEHP [17] compo-
nent in their Datalog Disassembler (ddisasm)[10]. GrammaTech’s
work also helped improve libEHP by submitting source code up-
dates with bug fixes, build system improvements, and porting it to
operate on MS Windows platforms.

Finally, ONR sponsored GrammaTech to perform a broad compar-
ison of binary rewriters, which includes both Zipr and ddisasm. [42]
Zipr performed very well. It was the only binary rewriter to trans-
form every program in the extensive test suite successfully. Zipr and
ddisasmwere the only binary rewriters that were able to transform
a majority of programs, while many other rewriters were deemed
“too academic” for wide adoption.

Dependable Computing. A joint project between Dependable
Computing and the authors leveraged formal verification tech-
niques to meet security and privacy needs for embedded systems
where development artifacts such as source code were unavail-
able. [7] Zipr was critical for meeting embedded systems’ strict
overhead limits, and was able to apply patches to meet security
requirements. Overall, Zipr demonstrated that it could rewrite a
binary with patches and yield less than 5% performance penalty.

Apogee Software. Apogee software, as part of the DARPA Cyber
Fault-tolerance Attack Recovery (CFAR) project, worked to realize
DARPA’s vision of executing multiple diverse copies of a program
in parallel to detect security violations. [3] The key insight is that
many attacks must be customized to the low-level details of a pro-
gram under attack. For example, an attackmight include an absolute
address or relative offset to exploit the program. If the same input
is sent to multiple diverse copies of the program, the programs will
behave differently, and that difference can be detected and used to
invoke recovery mechanisms.

In collaboration with the UVA team, Zipr was used to generate
artificial diversity for key web server programs such as Apache and
NginX. [26, 46] Zipr was used to randomize code, data layouts, and
locations for the stack, heap, and global address spaces. The Zipr
backend SDK was used to control code and data layout locations
so that detection of certain classes of attacks was provably certain.
For example, Zipr could create two variants of a program such that
their address spaces were disjoint. Thus, any attack that injected
an absolute address would crash at least one variant.

Other teams in the program did similar transformations using
compiler technology instead of operating directly on the binary. As
such, when an Ada program was introduced, the Zipr transformer
was the only tool that successfully produced diverse variants for
parallel execution. In fact, thanks to the robustness of Zipr binary
analysis, little additional effort was required when the source lan-
guage changed.

Zipr was also leveraged to enact automatic program repair. [23]
The program repair worked by instrumenting a program’s input
points tomemorize recent program inputs. If the input subsequently
caused a security violation, the input could be marked as malicious.
Future attempts to feed the input to the program caused the input to
be ignored and not processed by the program. This technique helps
defeat denial-of-service (DOS) attacks where the same input causes
the program to repeatedly crash and restart, preventing legitimate
requests from being serviced while the program is busy restarting.

Red Hat. Red Hat and the authors collaborated to deploy several
Zipr-based tools for ensemble fuzzing with an unnamed collabo-
rator. [29, 36] Unfortunately, as is often the case with commercial
partners, we can provide no additional detail due to confidentiality
restrictions.

3.2 Student Research
Zipr has provided direct, major contributions to two Ph.D. student
dissertations.

Dr. William Hawkins. The first student dissertation we will dis-
cuss is William Hawkins’s dissertation who was advised by Dr. Jack
W. Davidson. [14] Dr. Hawkins’s dissertation, granted by the Univer-
sity of Virginia, included content from several of the original Zipr
publications [15, 20] but also included several security-enhancing
transformations.

One of Dr. Hawkins’s dissertation’s contributions was a tech-
nique called dynamic canary randomization. [16] The technique
was designed to walk the stack periodically, find the stack canaries
used, and update the canaries to a new value. The primary goal
of the technique was to thwart attacks where an attacker can leak
stack canaries and then later leverage the leaked value to attack
critical control flow data on the stack.

The second of Dr. Hawkins’s contributions was a system called
Mixr.[13] Mixr was a tool that leveraged a Zipr plugin to lay out
the program into fixed-size code blocks. Each block had metadata
about locations within the block that would need to be patched
if the code were to move. When the transformed program was
executed, user-specified mechanisms triggered randomization of
the code locations. Mixr would randomly swap a predetermined
number of code blocks, leveraging the metadata to update code
offsets, and walk the execution stack to update return addresses
as needed. Mixr provided a moving target defense, a mechanism to
invalidate information that an attacker may attempt to learn over
time, such as code locations. [28] Dr. Hawkins’s work evaluated
differences in code block sizes and re-randomization times and
policies on the performance and security of an application.

Stefan Nagy. Dr. Stefan Nagy and his advisor Dr. Matthew Hicks
at Virginia Tech worked on techniques to improve closed-source
application fuzzing. [38] Two of Dr. Nagy’s major contributions
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were published in top tier conferences and leveraged the Zipr-based
plugin, Zafl.[36]

The first paper examines the features needed to achieve compiler-
quality fuzzing instrumentation on a binary program. [39] The
paper leveraged the IRDB SDK’s analyses to add AFL-style instru-
mentation to a binary program. The work presents several novel
techniques, as well as leveraging IRDB analyses such as dead reg-
ister analysis to instrument the program to produce code that has
the same performance (in terms of both execution time and bug-
finding capabilities) as compiler-generated instrumentation. These
techniques significantly improved the state of the art in binary-only
fuzzing, which previously relied on heavy-weight instrumentation
systems such as QEMU.

Dr. Nagy’s second paper leverages hardware breakpoints to de-
tect when fuzzing inputs causes new behavior in a program. [40]
When new behaviors are observed, heavier instrumentation deter-
mines the new behaviors, and remove the corresponding hardware
breakpoints before fuzzing continues. Because most fuzzing inputs
do not generate new behaviors, the technique rarely uses the more
expensive instrumentation, which amortizes their costs. This tech-
nique ultimately leads to near-zero overhead for tracing fuzzing
inputs in a program. The technique leverages the IRDB SDK’s loop
analysis methods to insert accounting instrumentation code in loop
headers to get coverage-preserving, coverage-guided tracing.

Student Information Requests. We have received numerous re-
quests from students for bug fixes, capability suggestions, etc. One
example is Franziska Maeckel, a student from the University of
Bamberg in Bamberg, Germany. Mr. Maeckel is working on an
open-source version of an address sanitizer for Zafl as part of his
dissertation. [37, 45] He contacted us regarding a suspected bug in
the Zipr layout engine due to the Zipr backend reporting an error in
the IR. We worked with him to track the issue to his transformation
violating one of the IR’s invariant properties.

Various other students have contacted us as well, indicating that
people are in fact interested in, and using Zipr. We have seen social
media posts from students elated that Zafl has produced an “order of
magnitude improvement in fuzzing speed” for their CTF challenge
problem. Unfortunately, as the project is freely available at Zephyr’s
Gitlab instance, we cannot track the number of anonymous down-
loads, how people may be using the technology, or re-sharing of
the project via other means.

3.3 Sponsored Research
Kevlar. The Kevlar project was sponsored research by the au-

thors with funding from the Air Force Research Labs (AFRL). The
project’s goal was to transition to practice a variety of research
tools for randomizing program layouts and adding hardening trans-
formations to applications. Many of these transformations were
previously realized using a dynamic rewriter, and the project lever-
aged the Zipr technology to apply the transformations statically,
significantly improving the viability for commercial and govern-
ment applications for several reasons:

• The Zipr static rewriting technology is more performant and
memory frugal, making adoption more likely.

• The statically rewritten binary can be easily tested in situ, as
minimal environmental changes are needed to add security.

Only changing the target binaries is needed, as opposed to
additional runtime software, etc. Such changes are harder to
deploy in many settings due to regulatory approval, testing
restrictions, or other non-technical issues.

• Humans need to gain trust in the system, and this trust is much
more difficult to gain with dynamic translation systems. Trust
in static translation systems can be audited for correctness by
experts and enhanced with semi-automatic formal verification
techniques.

Zipr dramatically improved the practicality of the security tech-
niques.

Trusted and Resilient Computation. The Trusted and Resilient
Mission Operations (TRMO) project, and its follow-on project,
Trusted and Resilient Systems (TRSYS) sought to provide security
enhancements for autonomous vehicles. [5, 27] Myriad Zipr-based
plugins provided cyber-attack detection capabilities. Program in-
strumentation relayed detected attacks to a supervisor module,
which invoked various forms of program repair. For example, in an
autonomous quad-copter, the attack-response module would put
the copter into “hover” mode with a trusted controller while the
more capable, yet untrusted controller program was being analyzed
and repaired. If the repair is successful, the repaired controller could
resume mission operations after a cyber attack.

The Zipr instrumentation system was vital to this work. It pro-
vided the low-overhead detection capabilities needed to enact pro-
gram repair, and stop the cyber-attack from being undetected or
immediately fatal.

Helix++. The Helix++ project aimed at transitioning Zipr-based
plugins to practice by leveraging Docker containers. [6, 22] By
protecting applications in commonly used Docker containers and
making these protected containers publicly available, we hoped to
lower the cost of having developers use Zipr-protected applications.

We specifically worked with UVA’s Research Computing staff
to identify key services and build a repository of hardened Docker
containers. We are in the process of working with them to deploy
their hardened application to end users and hope that this model can
be used to lower the cost of adopting academic security concepts.
4 CONCLUSIONS
This paper presented the Zipr binary rewriter as an artifact, pub-
lished in 2016 and 2017 [7, 12, 15, 20] and open-sourced in 2019 [32].
Zipr’s SDKs and plugin architecture targetmultiple platforms, focus-
ing on efficient binary rewriting to apply diversity and hardening
transformations to improve program security. Zipr’s robust and
efficient nature has been leveraged by the authors, their collabora-
tors, and third parties to enhance the body of knowledge through
publications and dissertations. Zipr also has a history of providing
open-source tools for diversity, program repair, fuzzing, research
computing, and autonomous vehicle security. We expect that Zipr
will continue to be a valuable tool for enhancing program security,
and we will continue to make it available and support user requests
for features, bug fixes, and clarifications of included features.
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