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ABSTRACT
angr is an open-source binary analysis platform that was released as
the research artifact of a paper published at 2016 IEEE Symposium
on Security & Privacy. Over the past eight years, angr has made
significant impact in academia, industry, government, and among
the enthusiasts of binary analysis. This short paper provides basic
information about angr, its ecosystem, and its impact.
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1 INTRODUCTION
angr is an open-source binary (and program) analysis platform
that was released under the BSD-2 license as the artifact to the
“angr paper” [58] published at 2016 IEEE Symposium on Security
& Privacy. The main project is on GitHub at https://github.com/
angr/angr, with about 6.8k “stars” and over 1,000 forks at the time
of writing. We wrote the first line of angr code in August 2013, and
the year of 2023 marks the 10th birthday of angr.

Beneath angr are several key libraries that have been indepen-
dently and widely used in the security community, including:

• Cle, a Pythonic generic binary loader.
• PyVEX, a library for interfacing with libVEX, which is the
lifter and translator that Valgrind uses.

• Claripy, a Python library that provides arithmetic and sym-
bolic abstraction for angr.

• archinfo, a Python library that provides architecture ab-
straction.
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• ailment, a Python library that implements AIL, the angr
intermediate language (IL).

The main angr project, all these underpinning libraries, as well
as a (mostly) functioning graphical user interface (GUI) angr man-
agement, are hosted under the angr organization on GitHub at
https://github.com/angr. The documentation of angr can be found
at https://docs.angr.io.

At the time of writing, excluding blank lines and comment lines,
angr, angr management, and angr’s libraries contain about 551k
lines of Python code, 44k lines of C code, and 3.5k lines of C++
code.

1.1 Creating an Open and Sustainable
Architecture

We pride ourselves with the creation of angr’s open and sustainable
architecture. A research publication, or even a source code release,
is not sufficient to create an open and sustainable architecture.
angr became a favorable choice of binary analysis research and
engineering through a concerted effort.

Developing in the open. Before angr’s release, a common
paradigmwas the Research-Publish-Push cycle: Groupswould
only push updates to their prototypes when the paper using
that code was published. This heavily discouraged the use
of both FuzzBall [10, 59] and the Binary Analysis Platform
(BAP) [6, 13], two older binary analysis frameworks that
failed to achieve traction before angr’s release. First, by us-
ing such a prototype of another research group, one had to
accept the fact that they were forced into a disadvantage:
The latest and most powerful version of the prototype was,
by definition, not the one they were using. Second, any bug
fixes or improvements they made to the prototype would
likely have to be discarded due to merge conflicts when the
new version was pushed. Conversely, angr is developed in
the open, with research project changes immediately up-
streamed, and the only releases delayed are add-on modules
built for specific projects. This maintains the community’s
trust that they are using the best architecture that we can
provide, and that contributions will be relevant.

Creating an active community. angr thrives, in a large part,
because of an active community of researchers, engineers,
hackers, and enthusiasts that frequent our GitHub issues
pages and our public channels to offer help. Discussions,
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issues, and pull requests occur on a daily basis. This improves
angr’s usability, teaches new users and contributors to use
and contribute to angr, and gives researchers confidence
that angr is something that can actually be used.

Interoperability with existing tools. angr interacts with and
uses existing tools wherever possible. There are bindings be-
tween angr and IDA Pro, angr and Binary Ninja, and angr
and radare2. Likewise, angr depends on standard compo-
nents of the ecosystem: Unicorn Engine is used for concrete
execution, ELFTools for ELF file loading, and so on. This al-
lows the architecture to benefit from parallel advancements
by underlying libraries.

Active maintenance and development. Since its public re-
lease in 2015, the angr team kept improving angr by adding
new features, improving its runtime performance, refactor-
ing its codebase, and maintaining published research arti-
facts. To this end, the angr team invested a significant amount
of engineering and innovation effort. Some examples in-
clude, the migration from Python 2 to Python 3 (in 2017),
the introduction of angr decompiler (open and continuous
development since summer 2017), the creation of angr IL
(AIL), the creation of program interaction description library
(archr [61]), the introduction of type hints (since 2022), and
the maintenance of key components in the Mechanical Phish
that rely on angr (angrop [57] and Rex [62]). While many
other binary analysis platforms (especially research-facing
ones) are gradually dying, angr is still extremely active.

2 IMPACT
Since we released angr to the public in August 2015, it has made
significant impact in the research, educational, industry, and gov-
ernment communities.

2.1 Academic Impact
On the academic side, the reference “angr paper” [58] has been cited
1,100 times, and many researchers simply cite the angr website [60]
instead. The framework itself is actually used (i.e., not just cited as a
related work) as a base by a significant body of work by researchers
unaffiliated with the authors of the framework. We list some key
research areas and papers below.

• angr is used as a base for vulnerability detection techniques
in userspace binaries [17, 28, 29, 39, 77, 78];

• angr is used in the firmware of a wide variety of devices,
from USB peripherals [31] to Industrial Control Systems [38],
and beyond [23, 25, 44, 49];

• angr is used to detect potentially vulnerable code clones [5,
33, 47, 75] and patches [76];

• angr is used in advancements in automatic exploit genera-
tion techniques, with high-profile targets including secure
enclaves [16], OS kernels [20, 68, 72, 73], and traditional
user-space binaries [43, 67];

• angr is used in the development of novel code reuse at-
tacks [9, 36, 42, 69];

• angr is used to create novel vulnerability mitigation tech-
niques [1, 15, 22, 35, 50, 55, 75];

• angr is used to build automatic repair of binaries [32] and
running systems [19];

• angr is used in code optimization [8];
• angr is used in code obfuscation [74] and deobfuscation [37,
40, 63];

• angr is used in binary code debloating [12];
• angr is used in binary attribution [2], binary code similarity
detection [34, 66], and watermarking [45];

• angr is used to analyze malware targeting various operating
systems and device classes [4, 7, 14, 27, 56];

• angr is used to reason about the security of hardware archi-
tectures [11, 64];

• angr is used in protocol analysis [21];
• angr is used in the creation of security visualizations [3];
• angr is used in a number of other developments in static
analysis [18, 24, 30, 41, 46, 51, 54, 70, 71].

• angr has also been utilized as a component by composite pro-
gram analysis, vulnerability detection, and hacking tools [48,
52, 53].

From our analysis of recent publication trends, angr appears
to be used in roughly one fifth of all binary analysis research in
academia.

2.2 Educational Impact
Aside from its use as a research tool in academia, angr is also heavily
used in educational cybersecurity competitions. Upon its release, it
“raised the bar” of cybersecurity challenge difficulty with its ability
to automatically solve many reverse engineering problems [26].
For example, the year after angr’s release, the organizers of DEF
CON CTF (the world championship of cybersecurity competitions)
fielded fewer reverse engineering challenges than other types of
challenges in their qualifying event. Anecdotally, from conversation
with the organizers, this seemed to be due to the difficulty in making
“angr-proof” challenges. Since then, competition organizers have
learned to create increasingly harder challenges to stump angr,
further challenging participants and increasing the value that they
can get from such events.

In a further example of angr’s impact on education, in the 2019
CSAW Embedded Security Challenge hardware hacking competi-
tion, a challenge focused on reverse engineering and exploitation
of embedded devices, nine of the top 10 teams used angr for their
solutions.

2.3 Industrial Impact
angr has also impacted industry. It is used by a wide range of com-
panies across different market segments, from Apple and Samsung
to Boeing and Raytheon, and a number of national labs, FFRDCs,
and similar entities.

2.4 Governmental Impact
angr has impacted government, with the angr-based Arbiter [65]
analysis technique utilized by cyber operators in the Department
of Defense to help accomplish mission goals.
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